综述与进展

氢键活化的硝基烯参与的多组分不对称串联合成研究进展

  • 严丽君 ,
  • 闫玉鑫 ,
  • 陈雪冰 ,
  • 王永超
展开
  • a 云南师范大学职业技术教育学院 昆明 650092;
    b 红河学院理学院 云南蒙自 661199

收稿日期: 2019-10-31

  修回日期: 2019-12-02

  网络出版日期: 2020-05-06

基金资助

云南省科技厅应用基础研究(Nos.2018FD016,2017FD073,2017FD156)资助项目.

Advances in Multicomponent Asymmetric Cascade Synthesis Involving Hydrogen-Bond-Activated Nitroolefins

  • Yan Lijun ,
  • Yan Yuxin ,
  • Chen Xuebing ,
  • Wang Yongchao
Expand
  • a College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092;
    b School of Science, Honghe University, Mengzi, Yunnan 6611992

Received date: 2019-10-31

  Revised date: 2019-12-02

  Online published: 2020-05-06

Supported by

Project supported by the Applied Basic Research Project Foundation of Yunnan Provincial Department of Science and Technology (Nos. 2018FD016, 2017FD073, 2017FD156).

摘要

有机催化多组分不对称串联反应是构建复杂手性化合物的最有效方法之一,双功能手性催化剂是一类重要的单分子双活化有机小分子催化剂,能同时对多个反应底物进行氢键活化,实现多个新键的形成和多个手性中心的立体选择性控制.基于双功能催化剂氢键活化的硝基烯是一类重要的有机反应合成子,能参与多种有机小分子催化的串联反应.对硝基烯参与的多组分不对称串联反应,根据双功能催化剂的结构特征,从双功能硫脲-胺催化、双功能方酰胺-胺催化、其它双功能催化剂催化三个方面进行文献综述.从反应类型、反应机理、反应特点及应用等方面进行了系统地阐述,并对该领域的研究应用和发展前景进行了展望.

本文引用格式

严丽君 , 闫玉鑫 , 陈雪冰 , 王永超 . 氢键活化的硝基烯参与的多组分不对称串联合成研究进展[J]. 有机化学, 2020 , 40(4) : 856 -872 . DOI: 10.6023/cjoc201910039

Abstract

Organocatalytic multicomponent asymmetric cascade reaction is generally regarded as one of the most effective methods for constructing complex chiral compounds. Bifunctional chiral catalysts are an important class of single-molecule double-activated organic catalysts, which can simultaneously activate hydrogen bonds of multiple reactive substrates to achieve the formation of multiple new bonds and stereoselective control of multiple chiral centers. Nitroolefins are important organic reaction synthons, which can participate in a variety of asymmetric cascade reactions by hydrogen bond activation. In this paper, the recent advances in nitroolefins-involved multicomponent asymmetric cascade reactions catalyzed by bifunctional organocatalysts involving chiral bifunctional thiourea amines, squaramide amines and other bifunctional catalysts are reviewed. Specifically, the catalytic systems, characteristics, mechanisms are systematically expounded, and the application of this research field is also prospected.

参考文献

[1] For some typical references in this area, see:(a) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2013, 114, 2390.
(b) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253.
(c) Yan, L. J., Wang, Y. C. ChemistrySelect 2016, 1, 6948.
(d) Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124.
(e) Li, X.; Guo, L.; Peng, C.; Han, B. Chem. Rec. 2019, 19, 394.
(f) Vinogradov, M. G.; Turova, O. V.; Zlotin, S. G. Org. Biomol. Chem. 2019, 17, 3670.
(g) Wu, X.; Li, M. L.; Gong, L. Z. Acta Chim. Sinica 2013, 71, 1091(in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)
(h) Han, Z. Y.; Gong, L. Z. Prog. Chem. 2018, 30, 505(in Chinese). (韩志勇, 龚流柱, 化学进展, 2018, 30, 505.)
[2] (a) Shibasaki, M.; Matsunaga, S. Chem. Soc. Rev. 2006, 35, 269.
(b) Georgiou, I.; Ilyashenko, G.; Whiting, A. Acc. Chem. Res. 2009, 42, 756.
(c) Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2011, 133, 16711.
(d) Xiao, Y. C.; Chen, F. E. ChemCatChem 2019, 11, 2018.
(e) Yu, X.; Wang, W. Chem.-Asian J. 2008, 3, 516.
(f) Held, F. E.; Tsogoeva, S. B. Catal. Sci. Technol. 2016, 6, 645.
(g) Du, L.; Peng, C.; Liao, J. Acta Chim. Sinica 2013, 71, 1239(in Chinese). (杜乐, 曹鹏, 廖建, 化学学报, 2013, 71, 1239.)
[3] Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417.
[4] Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
[5] For some typical references in this area, see:(a) Zhan, G.; Du, W.; Chen, Y. C. Chem. Soc. Rev. 2017, 46, 1675.
(b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
(c) Liu, J. Y.; Zhao, J.; Zhang, J. L.; Xu, P. F. Org. Lett. 2017, 19, 1846.
(d) Shirakawa, S.; Koga, K.; Tokuda, T.; Yamamoto, K.; Maruoka, K. Angew. Chem., Int. Ed. 2014, 53, 6220.
(e) Chen, P.; Bao, X.; Zhang, L. F.; Ding, M.; Han, X. J.; Li, J.; Zhang, B. B.; Tu, Y. Q.; Fan, C. A. Angew. Chem., Int. Ed. 2011, 50, 8161.
(f) Miyamura, H.; Choo, G. C.; Yasukawa, T.; Yoo, W. J.; Kobayashi, S. Chem. Commun. 2013, 49, 9917.
[6] (a) Barrett, A. G.; Graboski, G. G. Chem. Rev. 1986, 86, 751.
(b) Zimmer, R.; Reissig, H. U. Chem. Soc. Rev. 2014, 43, 2888.
(c) Feng, J.; Li, X. J. Org. Chem. 2017, 82, 7317.
(d) Gao, W.; Lv, H.; Zhang, T.; Yang, Y.; Chung, L. W.; Wu, Y. D.; Zhang, X. Chem. Sci. 2017, 8, 6419.
(e) Zhang, W. S.; Xu, W. J.; Zhang, F.; Li, Y. Chin. J. Org. Chem. 2019, 39, 1277(in Chinese). (张文生, 许文静, 张斐, 李焱, 有机化学, 2019, 39, 1277.)
(f) Yan, L. J.; Xu, H.; Wang, Y.; Dong, J. W.; Wang, Y. C. Chin. J. Org. Chem. 2020, 40, 284(in Chinese). (严丽君, 徐菡, 王艳, 董建伟, 王永超, 有机化学, 2020, 40, 284.)
[7] Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901.
[8] (a) Pei, Z.; Li, X.; von Geldern, T. W.; Longenecker, K.; Pireh, D.; Stewart, K. D.; Backes, B. J.; Lai, C.; Lubben, T. H.; Ballaron, S. J.; Beno, D. W. A.; Kempf-Grote, A. J.; Sham, H. L.; Trevillyan, J. M. J. Med. Chem. 2007, 50, 1983.
(b) Nara, S.; Tanaka, R.; Eishima, J.; Hara, M.; Takahashi, Y.; Otaki, S.; Foglesong, R. J.; Hughes, P. F.; Turkington, S.; Kanada, Y. J. Med. Chem. 2003, 46, 2467.
[9] Imashiro, R.; Uehara, H.; Barbas III, C. F. Org. Lett. 2010, 12, 5250.
[10] Uehara, H.; Imashiro, R.; Hernández-Torres, G.; Barbas III, C. F. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20672.
[11] Basle, O.; Raimondi, W.; Duque, M. D. M. S.; Bonne, D.; Constantieux, T.; Rodriguez, J. Org. Lett. 2010, 12, 5246.
[12] Wang, Y.; Han, R. G.; Zhao, Y. L.; Yang, S.; Xu, P. F.; Dixon, D. J. Angew. Chem., Int. Ed. 2009, 48, 9834.
[13] Mao, Z.; Jia, Y.; Xu, Z.; Wang, R. Adv. Synth. Catal. 2012, 354, 1401.
[14] For recent reviews, see:(a) Robinson, D. E. J. E.; Bull, S. D. Tetrahedron:Asymmetry 2003, 14, 1407.
(b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
(c) Reetz, M. T. Angew. Chem., Int. Ed. 2001, 40, 284.
(d) Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. 2005, 44, 3974.
[15] Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496.
[16] Zhou, B.; Yang, Y.; Shi, J.; Luo, Z.; Li, Y. J. Org. Chem. 2013, 78, 2897.
[17] For some typical references in this area, see:(a) Pearson, W. H.; Hines, J. V. J. Org. Chem. 1989, 54, 4235.
(b) Kingston, D. G.; Samranayake, G.; Ivey, C. A. J. Nat. Prod. 1990, 3, 1.
(c) Slade, J.; Stanton, J. L.; Ben-David, D.; Mazzenga, G. C. J. Med. Chem. 1985, 28, 1517.
(d) Le, V.; Inai, M.; Williams, R.; Kan, T. Nat. Prod. Rep. 2015, 32, 328.
(e) Jiang, Y.; Chen, X.; Zheng, Y.; Xue, Z.; Shu, C.; Yuan, W.; Zhang, X. Angew. Chem., Int. Ed. 2011, 50, 7304.
(f) Wang, Q.; Huang, W.; Yuan, H.; Cai, Q.; Chen, L.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2014, 136, 16120.
[18] Hou, W.; Wei, Q.; Liu, G.; Chen, J.; Guo, J.; Peng, Y. Org. Lett. 2015, 17, 4870.
[19] Hou, W.; Wei, Q.; Peng, Y. Adv. Synth. Catal. 2016, 358, 1035.
[20] (a) Smits, R.; Cadicamo, C. D.; Burger, K.; Koksch, B. Chem. Soc. Rev. 2008, 37, 1727.
(b) Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. Rev. 2004, 104, 1.
[21] For some recent reviews, see:(a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 2, 422.
(b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 2, 826.
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[22] Huang, X.; Liu, M.; Jasinski, J. P.; Peng, B.; Zhang, W. Adv. Synth. Catal. 2017, 359, 1919.
[23] Wang, Y.; Yu, D. F.; Liu, Y. Z.; Wei, H.; Luo, Y. C.; Dixon, D. J.; Xu, P. F. Chem.-Eur. J. 2010, 16, 3922.
[24] Enders, D.; Urbanietz, G.; Cassens-Sasse, E.; Keess, S.; Raabe, G. Adv. Synth. Catal. 2012, 354, 1481.
[25] Wu, M. Y.; He, W. W.; Liu, X. Y.; Tan, B. Angew. Chem., Int. Ed. 2015, 54, 9409.
[26] Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.
[27] (a) Giacalone, F.; Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406.
(b) Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science 2017, 358, 761.
(c) Deng, Y. H.; Zhang, X. Z.; Yu, K. Y.; Yan, X.; Du, J. Y.; Huang, H.; Fan, C. A. Chem. Commun. 2016, 52, 4183.
(d) Bae, H. Y.; Song, C. E. ACS Catal. 2015, 5, 3613.
(e) Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 2905.
[28] (a) Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. ACS Catal. 2018, 8, 7430.
(b) Kucherenko, A. S.; Kostenko, A. A.; Komogortsev, A. N.; Lichitsky, B. V.; Fedotov, M. Y.; Zlotin, S. G. J. Org. Chem. 2019, 84, 4304.
(c) Liu, K.; Khan, I.; Cheng, J.; Hsueh, Y. J.; Zhang, Y. J. ACS Catal. 2018, 8, 11600.
(d) Vural, U.; Durmaz, M.; Sirit, A. Org. Chem. Front. 2016, 3, 730.
(e)Yang, W.; Du, D. M. Org. Lett. 2010, 12, 5450.
[29] For some selected reports and recent reviews, see:(a) Shi, F.; Tao, Z. L.; Luo, S. W.; Tu, S. J.; Gong, L. Z. Chem.-Eur. J. 2012, 18, 6885.
(b) Xi, N.; Arvedson, S.; Eisenberg, S.; Han, N.; Handley, M.; Huang, L.; Huang, Q.; Kiselyov, A.; Liu, Q.; Lu, Y.; Nunez, G.; Osslund, T.; Powers, D.; Tasker, A. S.; Wang, L.; Xiang, T.; Xu, S.; Zhang, J.; Zhu, J.; Kendall, R.; Dominguez, C. Bioorg. Med. Chem. Lett. 2004, 14, 2905.
(c) Periyasami, G.; Raghunathan, R.; Surendiran, G.; Mathivanan, N. Bioorg. Med. Chem. Lett. 2008, 18, 2342.
(d) Girgis, A. S. Eur. J. Med. Chem. 2009, 44, 91.
(e) Ali, M. A.; Ismail, R.; Choon, T. S.; Yoon, Y. K.; Wei, A. C.; Pandian, S.; Kumar, R. S.; Osman, H.; Manogaran, E. Bioorg. Med. Chem. Lett. 2010, 20, 7064.
(f) Hong, L.; Wang, R. Adv. Synth. Catal. 2013, 355, 1023.
(g) Tian, L.; Luo, Y. C.; Hu, X. Q.; Xu, P. F. Asian J. Org. Chem. 2016, 5, 580.
(h) Mei, G. J.; Shi, F. Chem. Commun. 2018, 54, 6607.
(i) Fang, X.; Wang, C. J. Org. Biomol. Chem. 2018, 16, 2591.
(j) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas III, C. F. ACS Catal. 2014, 4, 743.
(k) Wang, Y. C.; Wang, J. L.; Burgess, K. S.; Zhang, J. W.; Zheng, Q. M.; Pu, Y. D.; Yan, L. J.; Chen, X. B. RSC Adv. 2018, 8, 5702.
(l) Zhang, D.; Qin, Y. Acta Chim. Sinica 2013, 71, 147(in Chinese). (张丹, 秦勇, 化学学报, 2013, 71, 147.)
(m) Zhang, L. L.; Zhang, J. W.; Xiang, S. H.; Guo, Z.; Tan, B. Org. Lett. 2018, 20, 6022.
(n) Zhang, L. L.; Zhang, J. W.; Xiang, S. H.; Guo, Z.; Tan, B. Chin. J. Chem. 2018, 36, 1182.
[30] Tian, L.; Hu, X. Q.; Li, Y. H.; Xu, P. F. Chem. Commun. 2013, 49, 7213.
[31] Chen, D. F.; Zhao, F.; Hu, Y.; Gong, L. Z. Angew. Chem., Int. Ed. 2014, 53, 10763.
[32] (a) Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 2134.
(b) Mengozzi, L.; Gualandi, A.; Cozzi, P. G. Chem. Sci. 2014, 5, 3915.
(c) Khashper, A.; Lubell, W. D. Org. Biomol. Chem. 2014, 12, 5052.
(d) Friedman, R. K.; Rovis, T. J. Am. Chem. Soc. 2009, 131, 10775.
(e) Perreault, S.; Rovis, T. Chem. Soc. Rev. 2009, 38, 3149.
[33] Blümel, M.; Chauhan, P.; Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 6012.
[34] Blüemel, M.; Chauhan, P.; Vermeeren, C.; Dreier, A.; Lehmann, C.; Enders, D. Synthesis 2015, 47, 3618.
[35] For recent reviews on the synthesis of tetrahydropyrans, see:(a) Yeung, K. S.; Paterson, I. Chem. Rev. 2005, 105, 4237.
(b) Nising, C. F.; Braese, S. Chem. Soc. Rev. 2012, 41, 988.
(c) Larrosa, I.; Romea, P.; Urpí. F. Tetrahedron 2008, 64, 2683.
[36] Hahn, R.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 3636.
[37] Chauhan, P.; Mahajan, S.; Loh, C. C.; Raabe, G.; Enders, D. Org. Lett. 2014, 16, 2954.
[38] Chauhan, P.; Urbanietz, G.; Raabe, G.; Enders, D. Chem. Commun. 2014, 50, 6853.
[39] Chauhan, P.; Mahajan, S.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2270.
[40] Sun, Q. S.; Chen, X. Y.; Zhu, H.; Lin, H.; Sun, X. W.; Lin, G. Q. Org. Chem. Front. 2015, 2, 110.
[41] Sun, Q. S.; Zhu, H.; Lin, H.; Tan, Y.; Yang, X. D.; Sun, X. W.; Sun, X. Tetrahedron Lett. 2016, 57, 5768.
[42] For some typical references in this area, see:(a) Yang, J.; Liu, G. Y.; Lu, D. L.; Dai, F.; Qian, Y. P.; Jin, X. L.; Zhou, B. Chem.-Eur. J. 2010, 16, 12808.
(b) Koufaki, M.; Theodorou, E.; Galaris, D.; Nousis, L.; Katsanou, E. S.; Alexis, M. N. J. Med. Chem. 2006, 49, 300.
(c) Koufaki, M.; Detsi, A.; Theodorou, E.; Kiziridi, C.; Calogeropoulou, T.; Vassilopoulos, A.; Kourounakis, A. P.; Rekka, E.; Kourounakis, P. N.; Gaitanaki, C.; Papazafiri, P. Bioorg. Med. Chem. 2004, 12, 4835.
(d) Reddy, K. A.; Lohray, B. B.; Bhushan, V.; Reddy, A. S.; Mamidi, N. V. S. R.; Reddy, P. P.; Saibaba, V.; Reddy, N. J.; Suryaprakash, A.; Misra, P.; Vikramadithyan, R. K.; Rajagopalan, R. J. Med. Chem. 1999, 42, 3265.
[43] Xiao, Y.; Lin, J. B.; Zhao, Y. N.; Liu, J. Y.; Xu, P. F. Org. Lett. 2016, 18, 6276.
[44] (a) Dalpozzo, R.; Bartoli, G.; Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247.
(b) Zhang, J.; Qian, Z.; Wu, X.; Ding, Y.; Li, J.; Lu, C.; Shen, Y. Org. Lett. 2014, 16, 2752.
(c) Zhou, F.; Liu, Y. L.; Zhou, J. Adv. Synth. Catal. 2010, 352, 1381.
(d) Ziarani, G. M.; Moradi, R.; Lashgari, N. Tetrahedron:Asymmetry 2015, 26, 517.
(e) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(f) Shen, K.; Liu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 327.
[45] Lian, X. L.; Meng, J.; Han, Z. Y. Org. Lett. 2016, 18, 4270.
[46] Urruzuno, I.; Mugica, O.; Oiarbide, M.; Palomo, C. Angew. Chem., Int. Ed. 2017, 56, 2059.
[47] (a) Hamama, W. S.; El-Gohary, H. G.; Kuhnert, N; Zoorob, H. H. Curr. Org. Chem. 2012, 16, 373.
(b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
(c) Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. CNS Drug Rev. 2006, 12, 9.
(d) Hadi, V.; Koh, Y. H.; Sanchez, T. W.; Barrios, D.; Neamati, N.; Jung, K. W. Bioorg. Med. Chem. Lett. 2010, 20, 6854.
(e) Chande, M. S.; Barve, P. A.; Suryanarayan, V. J. Heterocycl. Chem. 2007, 44, 49.
[48] Li, J. H.; Cui, Z. H.; Du, D. M. Org. Chem. Front. 2016, 3, 1087.
[49] (a) Wang, T.; Yu, Z.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. Chem. Sci. 2015, 6, 4912.
(b) Ibrahim, D. A. Eur. J. Med. Chem. 2009, 44, 2776.
(c) Abdel-Wahab, B. F.; Abdel-Latif, E.; Mohamed, H. A.; Awad, G. E. Eur. J. Med. Chem. 2012, 52, 263.
(d) Bayomi, S. M.; El-Kashef, H. A.; El-Ashmawy, M. B.; Nasr, M. N.; El-Sherbeny, M. A.; Abdel-Aziz, N. I.; El-Sayed, M. A. A.; Suddek, G. M.; El-Messery, S. M.; Ghaly, M. A. Eur. J. Med. Chem. 2015, 101, 584.
(e) Ding, C. R.; Pan, Y. Y.; Yin, X.; Tan, C. X. Chin. J. Org. Chem. 2019, 39, 2099(in Chinese). (丁成荣, 潘亚运, 殷许, 谭成侠, 有机化学, 2019, 39, 2099.)
[50] Xiao, Y.; Jiang, R.; Wang, Y.; Zhou, Z. Adv. Synth. Catal. 2018, 360, 1961.
[51] For some typical references in this area, see:(a) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142.
(b) Zhang, Y. L.; He, B. J.; Xie, Y. W.; Wang, Y. H.; Wang, Y. L.; Shen, Y. C.; Huang, Y. Y. Adv. Synth. Catal. 2019, 361, 3074.
(c) Kang, Q.; Zhao, Z. A.; You, S. L. J. Am. Chem. Soc. 2007, 129, 1484.
(d) Wang, S. G.; Yin, Q.; Zhuo, C. X.; You, S. L. Angew. Chem., Int. Ed. 2015, 54, 647.
(e) Yin, Q.; Wang, S. G.; You, S. L. Org. Lett. 2013, 15, 2688.
(f) Zhang, K. F.; Nie, J.; Guo, R.; Zheng, Y.; Ma, J. A. Adv. Synth. Catal. 2013, 355, 3497.
(g) Zhang, Y.; Ao, Y. F.; Huang, Z. T.; Wang, D. X.; Wang, M. X.; Zhu, J. Angew. Chem. Int. Ed. 2016, 55, 5282.
(h) Smith, M. J.; Reichl, K. D.; Escobar, R. A.; Heavey, T. J.; Coker, D. F.; Schaus, S. E.; Porco Jr, J. A. J. Am. Chem. Soc. 2018, 141, 148.
[52] (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566.
(b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356.
(c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804.
[53] (a) Wang, Y. B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
(b) Xia, Z. L.; Zheng, C.; Xu, R. Q.; You, S. L. Nat. commun. 2019, 10, 3150.
(c) Zhang, L.; Xiang, S. H.; Wang, J. J.; Xiao, J.; Wang, J. Q.; Tan, B. Nat. Commun. 2019, 10, 566.
(d) Li, J. S.; Liu, Y. J.; Li, S.; Ma, J. A. Chem. Commun. 2018, 54, 9151.
(e) Su, Y. J.; Shi, F. Q. Chin. J. Org. Chem. 2010, 30, 486(in Chinese). (苏亚军, 史福强, 有机化学, 2010, 30, 486.)
[54] Zhu, G.; Wang, B.; Bao, X.; Zhang, H.; Wei, Q.; Qu, J. Chem. Commun. 2015, 51, 15510.
[55] Wu, S.; Zhu, G.; Wei, S.; Chen, H.; Qu, J.; Wang, B. Org. Biomol. Chem. 2018, 16, 807.
[56] For some recent reviews, see:(a) Si, Y.; Chen, M.; Wu, L. Chem. Soc. Rev. 2016, 45, 690.
(b) Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L.; Yu, R.; Ma, G.; Su, Z.; Zhao, H.; Wang, D. Chem. Soc. Rev. 2015, 44, 6749.
(c) Chen, Y.; Chen, H. R.; Shi, J. L. Acc. Chem. Res. 2014, 47, 125.
(d) Sasidharan, M.; Nakashima, K. Acc. Chem. Res. 2014, 47, 157.
[57] Dai, F.; Zhao, Z.; Xie, G.; Feng, D.; Ma, X. ChemCatChem 2017, 9, 89.
[58] (a) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Zhou, Z.; Wu, G.; Fang, J.; Tang, C. Eur. J. Org. Chem. 2010, 5777.
(b) Lu, A.; Liu, T.; Wu, R.; Wang, Y.; Wu, G.; Zhou, Z.; Fang, J.; Tang, C. J. Org. Chem. 2011, 76, 3872.
[59] Sun, J.; Jiang, C.; Zhou, Z. Eur. J. Org. Chem. 2016, 2016, 1165.
[60] (a) Dong, S.; Feng, X.; Liu, X. Chem. Soc. Rev. 2018, 47, 8525.
(b) Xie, L.; Dong, S.; Zhang, Q.; Feng, X.; Liu, X. Chem. Commun. 2018, 55, 87.
(c) Kang, T.; Zhao, P.; Yang, J.; Lin, L.; Feng, X.; Liu, X. Chem.-Eur. J. 2018, 24, 3703.
(d) Cui, X. Y.; Tan, C. H.; Leow, D. Org. Biomol. Chem. 2019, 17, 4689.
[61] Chen, Y.; Liu, X.; Luo, W.; Lin, L.; Feng, X. Synlett 2017, 28, 966.
文章导航

/