综述与进展

聚集诱导发光有机氟化合物的研究进展

  • 秦成远 ,
  • 刘威 ,
  • 聂永 ,
  • 高迎 ,
  • 苗金玲 ,
  • 李天瑞 ,
  • 蒋绪川
展开
  • a 济南大学智能材料与工程研究院 济南 250022;
    b 济南大学化学化工学院 山东省氟化学化工材料重点实验室 济南 250022

收稿日期: 2020-03-22

  修回日期: 2020-05-09

  网络出版日期: 2020-05-28

基金资助

山东省自然科学基金(No.ZR2017LB008)、济南大学科技计划(No.XKY1906)和山东莘纳智能新材料有限公司资助项目.

Advances in Organofluorine Compounds with Aggregation-Induced Emission

  • Qin Chengyuan ,
  • Liu Wei ,
  • Nie Yong ,
  • Gao Ying ,
  • Miao Jinling ,
  • Li Tianrui ,
  • Jiang Xuchuan
Expand
  • a Institute for Smart Materials&Engineering, University of Jinan, Jinan 250022;
    b School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022

Received date: 2020-03-22

  Revised date: 2020-05-09

  Online published: 2020-05-28

Supported by

Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017LB008), the Science and Technology Program of University of Jinan (No. XKY1906) and the Shandong Shenna Smart Advanced Materials Co., Ltd.

摘要

聚集诱导发光(aggregation-induced emission,AIE)化合物因在生物和化学传感、发光材料、显示等领域具有重要价值而备受关注.作为一类重要的功能分子,有机氟化合物在化学和材料等领域被广泛研究.汇总了具有聚集诱导发光性质的有机氟化合物,并进行了分类讨论.AIE有机氟化合物包括氟代的四苯基乙烯(TPE)衍生物、二苯乙烯基蒽(DSA)衍生物、氰基二苯基乙烯衍生物和二苯乙烯基苯衍生物等常见的AIE化合物,也包括聚合物、碳硼烷簇合物和室温磷光化合物,还有其它一些含氟结构.AIE化合物氟代后,稳定性一般会提高,氟原子参与分子间相互作用,导致聚集态的结构发生改变,从而导致发光性质的改变,如发光增强、发光波长红移(蓝移)或发光量子效率及发光寿命提高等.最后,对AIE有机氟化合物的研究前景进行了展望.

本文引用格式

秦成远 , 刘威 , 聂永 , 高迎 , 苗金玲 , 李天瑞 , 蒋绪川 . 聚集诱导发光有机氟化合物的研究进展[J]. 有机化学, 2020 , 40(8) : 2232 -2253 . DOI: 10.6023/cjoc202003051

Abstract

Aggregation-induced emission (AIE) compounds have attracted much attention due to their important potential applications in biological and chemical sensing, luminescent materials, display and other areas. As an important class of functional molecules, organofluorine compounds have been widely studied in areas such as organic chemitry and materials chemistry. The organofluorine compounds with AIE properties are summarized and classified. The currently reported AIE organofluorine compounds include the fluorinated tetraphenylethene (TPE) derivatives, 9,10-distyrylanthracene (DSA) derivatives, cyanostilbene derivatives, distyrylbenzene derivatives, fluorinated polymers, carborane clusters, room temperature phosphorescent molecules, and some other fluorinated structures. With fluorine atoms in the structures, the stability of the resulting AIE compounds is generally improved, and fluorine atoms often participate in the intermolecular interactions leading to significant changes in the structure of the aggregation state, and hence changes in luminescence properties, for example, emission enhancement, bathochromism or hypsochromism of the emissions, improvement of the emission quantum yield and lifetime. The prospects of the future study are also discussed.

参考文献

[1] Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan,X.; Liu, Y.; Zhu, D. Chem. Commun. 2001, 1740.
[2] Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z. Adv. Mater. 2014, 26, 5429.
[3] Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[4] Hong, Y.; Lam, J. W.; Tang, B. Z. Chem. Commun. 2009, 4332.
[5] Luo, J.; Song, K.; Gu, F. L.; Miao, Q. Chem. Sci. 2011, 2, 2029.
[6] Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z. Chem.-Eur. J. 2014, 20, 15349.
[7] Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Angew. Chem., Int. Ed. 2014, 53, 2119.
[8] Liu, J.; Meng, Q.; Zhang, X.; Lu, X.; He, P.; Jiang, L.; Dong, H.; Hu, W. Chem. Commun. 2013, 49, 1199.
[9] Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Chem. Commun. 2007, 1003.
[10] Zhang, Q.; Kelly, M. A.; Bauer, N.; You, W. Acc. Chem. Res. 2017, 50, 2401.
[11] Farinola, G. M.; Babudri, F.; Cardone, A.; Hassan Omar, O.; Martinelli, C.; Naso, F.; Pinto, V.; Ragni, R. Adv. Sci. Technol. 2010, 75, 108.
[12] MilianMedina, B.; Gierschner, J. J. Phys. Chem. Lett. 2017, 8, 91.
[13] Chen, M.; Sun, J.; Qin, A.; Tang, B. Z. Chin. Sci. Bull. 2016, 61, 304(in Chinese). (陈明, 孙景志, 秦安军, 唐本忠, 科学通报, 2016, 61, 304.)
[14] Shen, P.; Zhuang, Z.; Zhao, Z.; Tang, B. Z. J. Mater. Chem. C 2018, 6, 11835.
[15] Guo, L. X.; Xing, Y.; Wang, M.; Sun, Y.; Zhang, X.; Lin, B. P.; Yang, H. J. Mater. Chem. C 2019, 7, 4828.
[16] Fang, G.; Liu, J.; Zhang, C.; Liu, B. ACS Appl. Mater. Interfaces 2018, 10, 11546.
[17] Wang, N.; Zhang, J.; Xu, X.; Feng, S. Dalton Trans. 2020, 49, 1883.
[18] Shimizu, S.; Murayama, A.; Haruyama, T.; Iino, T.; Mori, S.; Furuta, H.; Kobayashi, N. Chem.-Eur. J. 2015, 21, 12996.
[19] Wang, X.; Wu, Y.; Liu, Q.; Li, Z.; Yan, H.; Ji, C.; Duan, J.; Liu, Z. Chem. Commun. 2015, 51, 784.
[20] Yamaguchi, M.; Ito, S.; Hirose, A.; Tanaka, K.; Chujo, Y. Mater. Chem. Front. 2017, 1, 1573.
[21] Ravotto, L.; Ceroni, P. Coord. Chem. Rev. 2017, 346, 62.
[22] Alam, P.; Climent, C.; Alemany, P.; Laskar, I. J. Photochem. Photobiol., C 2019, 41, 100317.
[23] Dong, W.; Fei, T.; PalmaCando, A.; Scherf, U. Polym. Chem. 2014, 5, 4048.
[24] Zhang, J.; Yang, Q.; Zhu, Y.; Liu, H.; Chi, Z.; Su, C. Dalton Trans. 2014, 43, 15785.
[25] Obora, Y.; Moriya, H.; Tokunaga, M.; Tsuji, Y. Chem. Commun. 2003, 2820.
[26] Mills, N. S.; Tirla, C.; Benish, M. A.; Rakowitz, A. J.; Bebell, L. M.; Hurd, C. M. M.; Bria, A. L. M. J. Org. Chem. 2005, 70, 10709.
[27] Xue, F.; Zhao, J.; Hor, T. S. A.; Hayashi, T. J. Am. Chem. Soc. 2015, 137, 3189.
[28] Lin, Y.; Chen, G.; Zhao, L.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. J. Mater. Chem. C 2015, 3, 112.
[29] Yang, Z.; Qin, W.; Leung, N. L. C.; Arseneault, M.; Lam, J. W. Y.; Liang, G.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 99.
[30] Tu, J.; Liu, F.; Wang, J.; Li, X.; Gong, Y.; Fan. Y.; Han, M.; Li, Q.; Li, Z. ChemPhotoChem 2019, 3, 133.
[31] Kokado, K.; Machida, T.; Iwasa, T.; Taketsugu, T.; Sada, K. J. Phys. Chem. C 2018, 122, 245.
[32] Wu, Y.; Yan, C.; Li, D.; Yuan, C.; Sun, J.; Zhou, S.; Zhang, H.; Shao, X. Chem.-Asian J. 2019, 14, 1860.
[33] Zhang, H.; Nie, Y.; Miao, J.; Zhang, D.; Li, Y.; Liu, G.; Sun, G.; Jiang, X. J. Mater. Chem. C 2019, 7, 3306.
[34] Xu, P.; Qiu, Q.; Ye, X.; Wei, M.; Xi, W.; Feng, H.; Qian, Z. Chem. Commun. 2019, 55, 14938.
[35] Xu, S.; Bai, X.; Ma, J.; Xu, M.; Hu, G.; James, T. D.; Wang, L. Anal. Chem. 2016, 88, 7853.
[36] Wu, H.; Jiang, Y.; Ding, Y.; Meng, Y.; Zeng, Z.; Cabanetos, C.; Zhou, G.; Gao, J.; Liu, J.; Roncali, J. Dyes Pigm. 2017, 146, 323.
[37] Cui, Y.; Yin, Y.; Cao, H.; Zhang, M.; Shan, G.; Sun, H.; Wu, Y.; Su, Z.; Xie, W. Dyes Pigm. 2015, 119, 62.
[38] Jadhav, T.; Choi, J. M.; Dhokale, B.; Mobin, S. M.; Lee, J. Y.; Misra, R. J. Phys. Chem. C 2016, 120, 18487.
[39] Jadhav, T.; Dhokale, B.;Patil, Y.; Mobin, S.; Misra, R. J. Phys. Chem. C 2016, 120, 24030.
[40] Weng, S.; Si, Z.; Zhou, Y.; Zuo, Q.; Shi, L.; Duan, Q. J. Lumin. 2018, 195, 14.
[41] Zhao, F.; Chen, Z.; Liu, G.; Fan, C.; Pu, S. Tetrahedron Lett. 2018, 59, 836.
[42] Zhu, X.; Wang, D.; Huang, H.; Zhang, X.; Wang, S.; Liu, R.; Zhu, H. Dyes Pigm. 2019, 171, 107657.
[43] Li, C.; Gong, W.; Hu, Z.; Aldred, M.; Zhang, G.; Chen, T.; Huang, Z.; Zhu, M. RSC Adv. 2013, 3, 8967
[44] Li, S.; Shang, Y.; Wang, L.; Kwok, R. T. K.; Tang, B. Z. J. Mater. Chem. C 2016, 4, 5363.
[45] Zhao, F.; Chen, Z.; Fan, C.; Liu, G.; Pu, S. Dyes Pigm. 2019, 164, 390.
[46] Yu, C.; Hsu, C.; Weng, H. RSC Adv. 2018, 8, 12619.
[47] Lusting, W.; Wang, F.; Teat, S.; Hu, Z.; Gong, Q.; Li, J. Inorg. Chem. 2016, 55, 7250.
[48] Wang, F.; Liu, W.; Teat, S.; Xu, F.; Wang, H.; Wang, X.; An, L.; Li, J. Chem. Commun. 2016, 52, 10249.
[49] Lusting, W.; Teat, S.; Li, J. J. Mater. Chem. C 2019, 7, 14739.
[50] Zhang, Z.; Lieu, T.; Wu, C.; Wang, X.; Wu, J.; Daugulis, O.; Miljanic, O. Chem. Commun. 2019, 55, 9387.
[51] Ma, S.; Ma, L.; Han, W.; Jiang, S.; Xu, B.; Tian, W. Sci. Sin. Chim. 2018, 48, 683(in Chinese). (马愫倩, 马莲, 韩文坤, 姜姗, 徐斌, 田文晶, 中国科学:化学, 2018, 48, 683.)
[52] Xu, B.; Tian, W. Aggregation-Induced Emission:Materials and Applications Volume 1, In ACS Symposium Series, Vol. 1226, Eds.:Fujiki, M.; Liu, B.; Tang, B. Z. American Chemical Society, Washington, DC, 2016, p. 113.
[53] Liu, W.; Wang, Y.; Sun, M.; Zhang, D.; Zheng, M.; Yang, W. Chem. Commun. 2013, 49, 6042.
[54] Liu, W.; Wang, Y.; Bu, L.; Li, J.; Sun, M.; Zhang, D.; Zheng, M.; Yang, C.; Xue, S.; Yang, W. J. Lumin. 2013, 143, 50.
[55] Dong, Y.; Xu, B.; Zhang, J.; Lu, H.; Wen, S.; Chen, F.; He, J.; Li, B.; Ye, L.; Tian, W. CrystEngComm 2012, 14, 6593.
[56] Wu, D.; Wang, M.; Luo, Y.; Zhang, Y.; Ma, Y.; Sun, B. New J. Chem. 2017, 41, 4220.
[57] Fang, W.; Zhang, G.; Chen, J.; Kong, L.; Yang, L.; Bi, H.; Yang, J. Sens. Actuators, B 2016, 229, 338.
[58] Martínez-Abadía, M.; Robles-Hernández, B.; Villacampa, B.; de la Fuente, M. R.; Giménez, R.; Ros, M. B. J. Mater. Chem. C 2015, 3, 3038.
[59] Seo, J.; Chung, J. W.; Cho, I.; Park, S. Y. Soft Matter 2012, 8, 7617.
[60] An, B.; Gierschner, J.; Park, S. Y. Acc. Chem. Res. 2012, 45, 544.
[61] Yeh, H.; Wu, W.; Wen, Y.; Wang, J.; Chen, C. J. Org. Chem. 2004, 69, 6455.
[62] Dou, C.; Han, L.; Zhao, S.; Zhang, H.; Wang, Y. J. Phys. Chem. Lett. 2011, 2, 666.
[63] Lim, S.; An, B.; Jung, S.; Chung, M.; Park, S. Angew. Chem., Int. Ed. 2004, 43, 6346.
[64] An, B.; Gihm, S.; Chung, J.; Park, C.; Kwon, S.; Park, S. J. Am. Chem. Soc. 2009, 131, 3950.
[65] Shin, S.; Gihm, S.; Park, C.; Kim, S.; Park, S. Chem. Mater. 2013, 25, 3288.
[66] Ma, C.; Zhang, X.; Yang, Y.; Ma, Z.; Yang, L.; Wu, Y.; Liu, H.; Jia, X.; Wei, Y. Dyes Pigm. 2016, 129,141.
[67] Ma, C.; Zhang, X.; Yang, L.; Li, Y.; Liu, H.; Yang, Y.; Xie, G.; Ou, Y.; Wei, Y. Dyes Pigm. 2017, 136, 85.
[68] Li, W.; Wang, Y.; Zhang, Y.; Gao, Y.; Dong, Y.; Zhang, X.; Song, Q.; Yang, B.; Ma, Y.; Zhang, C. J. Mater. Chem. C 2017, 5, 8097.
[69] Jyothi, M.; Annadhasan, M.; Vuppu, V.; Chandrasekar, R. Soft Matter 2020, 16, 2664.
[70] Javed, I.; Zhou, T.; Muhammd, F.; Guo, J.; Zhang, H.; Wang, Y. Langmuir 2012, 28,1439.
[71] Liu, J.; Li, W.; Liu, M.; Dong, Y.; Dai, Yu.; Song, Q.; Wang, J.; Zhang, C. Phys. Chem. Chem. Phys. 2018, 20, 28279
[72] Wang, Y.; Liu, J.; Yuan, W.; Wang, Y.; Zhou, H.; Liu, X.; Cao, J.; Zhang, C. Dyes Pigm. 2019, 167, 135.
[73] Kwon, M. S.; Gierschner, J.; Seo, J.; Park, S. Y. J. Mater. Chem. C 2014, 2, 2552.
[74] Kim, H. J.; Whang, D. R.; Gierschner, J.; Lee, C. H.; Park, S. Y. Angew. Chem., Int. Ed. 2015, 54, 4330.
[75] Xu, D.; Hao, J.; Gao, H.; Wang, Y.; Wang, Y.; Liu, X.; Han, A.; Zhang, C. Dyes Pigm. 2018, 150, 293.
[76] Wang, Y.; Xu, D.; Gao, H.; Wang, Y.; Liu, X.; Han, A.; Zhang, C.; Zang, L. J. Phys. Chem. C 2018, 122, 2297.
[77] Cheng, D.; Xu, D.; Wang, Y.; Zhou, H.; Zhou, Z.; Liu, X.; Han, A.; Zhang, C. Dyes Pigm. 2020, 173, 107937.
[78] Wang, Y.; Cheng, D.; Xu, D.; Zhou, H.; Liu, X.; Wang, Y.; Han, A.; Zhang, C. Dyes Pigm. 2019, 171, 107689.
[79] Cheng, D.; Xu, D.; Wang, Y.; Zhou, H.; Zhang, Y.; Liu, X.; Han, A.; Zhang, C. Dyes Pigm. 2020, 173, 107934.
[80] Zhang, Y.; Zhao, X.; Li, Y.; Wang, X.; Wang, Q.; Lu, H., Zhu, L. Dyes Pigm. 2019, 165, 53.
[81] Zhang, Y. X.; Fu, H.; Liu, D. E.; An, J. X.; Gao, H. J. Nanobiotechnol. 2019, 17, 104.
[82] Song, Y. K.; Lee, H.; Lee, C. K.; Choi, M. H.; Kim, C. J.; Lee, S.; Noh, S. M.; Park, Y. Appl. Surf. Sci. 2020, 511, 145556.
[83] Wang, F.; Li, X.; Wang, S.; Li, C.; Dong, H.; Ma, X.; Kim, S.; Cao, D. Chin. Chem. Lett. 2016, 27, 1592.
[84] Zhang, F.; Di, Y.; Li, Y.; Qi, Q.; Qian, J.; Fu, X.; Xu, B.; Tian, W. Dyes Pigm. 2017, 142, 491.
[85] Wang, Y.; Cheng, D.; Zhou, H.; Liu, J.; Liu, X.; Cao, J.; Han, A.; Zhang, C. Dyes Pigm. 2019, 171, 107739.
[86] Wang, Y.; Cheng, D.; Zhou, H.; Liu, J.; Liu, X.; Wang, Y.; Han, A.; Zhang, C. Dyes Pigm. 2019, 170, 107606.
[87] Xie, Z.; Yang, B.; Xie, W.; Liu, L.; Shen, F.; Wang, H.; Yang, X.; Wang, Z.; Li, Y.; Hanif, M.; Yang, G.; Ling, Ye.; Ma, Y. J. Phys. Chem. B 2006, 110, 20993.
[88] Shi, Z.; Davies, J.; Jang, S.; Kaminsky, W.; Jen, A. Chem. Commun. 2012, 48, 7880.
[89] Freudenberg, J.; Rominger, F.; Bunz, U. Chem.-Eur. J. 2015, 21, 16749.
[90] Freudenberg, J.; Rominger, F.; Bunz, U. Chem.-Eur. J. 2016, 22, 8740.
[91] Lu, H.; Su, F.; Mei, Q.; Tian, Y.; Tian, W.; Johnson, R. H.; Meldrum, D. R. J. Mater. Chem. 2012, 22, 9890.
[92] Lim, S.; An, B.; Park, S. Y. Macromolecules 2005, 38, 6236.
[93] Sinawang, G.; Wang, J.; Wu, B.; Wang, X.; He, Y. RSC Adv. 2016, 6, 12647.
[94] Zhao, Y.; Zhu, W.; Ren, L.; Zhang, K. Polym. Chem. 2016, 7, 5386.
[95] Wang, Q.; Chen, M.; Yao, B.; Wang, J.; Mei, J.; Sun, J. Z.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2013, 34, 796.
[96] Wu, Y.; He, B.; Quan, C.; Zheng, C.; Deng, H.; Hu, R.; Zhao, Z.; Huang, F.; Qin, A.; Tang, B. Z. Macromol. Rapid Commun. 2017, 38, 1700070.
[97] Li, W.; Che, C.; Pang, J.; Cao, Z.; Jiao, Y.; Xu, J.; Ren, Y.; Li, X. Langmuir 2018, 34, 5334.
[98] Li, W. T.; Zhang, H.; Li, X.; Yu, H.; Che, S. L.; Luan, S.; Ren, Y.; Li, S.; Liu, P.; Yu, X.; Li, X. ACS Appl. Mater. Interfaces 2020, 12, 7617.
[99] Mukherjee, S.; Thilagar, P. J. Mater. Chem. C 2016, 4, 2647.
[100] Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.
[101] Nunez, R.; Romero, I.; Teixidor, F.; Vinas, C. Chem. Soc. Rev. 2016, 45, 5147.
[102] Nunez, R.; Tarres, M.; FerrerUgalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.
[103] Tanaka, K.; Chujo, Y. In Principles and Applications of Aggregation-Induced Emission, Vol. 1, Eds.:Tang, B. Z.; Tang, Y., Springer Nature Switzerland AG, 2019, p. 27.
[104] Nie, Y.; Zhang, H.; Miao, J.; Zhao, X.; Li, Y.; Sun, G. J. Organomet. Chem. 2018, 865, 200.
[105] Kokado, K.; Chujo, Y. J. Org. Chem. 2011, 76, 316.
[106] Bae, H. J.; Kim, H.; Lee, K. M.; Kim, T.; Lee, Y. S.; Do, Y.; Lee, M. H. Dalton Trans. 2014, 43, 4978.
[107] Tu, D.; Pakkin, L.; Guo, S.; Lu, C.; Qiang, Z.; Yan, H. Angew. Chem., Int. Ed. 2017, 56, 11370.
[108] Chen, Y.; Guo, J.; Wu, X.; Jia, D.; Tong, F. Dyes Pigm. 2018, 148, 180.
[109] Wei, X.; Zhu, M.; Cheng, Z.; Lee, M.; Yan, H.; Lu, C.; Xu, J. Angew. Chem., Int. Ed. 2019, 58, 3162.
[110] Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem., Int. Ed. 2015, 54, 4231.
[111] Zhan G.; Liu, Z.; Bian, Z.; Huang, C. Front. Chem. 2019, 7, 305.
[112] Data, P.; Takeda, Y. Chem.-Asian J. 2019, 14, 1613.
[113] Yuan, W. Z.; Shen, X. Y.; Zhao, H.; Tang, B. Z. J. Phys. Chem. C 2010, 114, 6090.
[114] Gong, Y.; Tan, Y.; Li, H.; Zhang, Y.; Yuan, W.; Zhang, Y.; Sun, J.; Tang, B. Z. Sci. China:Chem. 2013, 56, 1183.
[115] Gong, Y.; Zhao, L.; Peng, Q.; Fan, D.; Yuan, W. Z.; Zhang, Y.; Tang, B. Z. Chem. Sci. 2015, 6, 4438.
[116] Zhao, W.; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z. Chem. 2016, 1, 592.
[117] He, Z.; Zhao, W.; Lam, J.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B. Z. Nat. Commun. 2017, 8, 416.
[118] Shimizu, M.; Kimura, A.; Sakaguchi, H. Eur. J. Org. Chem. 2016, 467.
[119] Yang, J.; Qin, J.; Geng, P.; Wang, J.; Fang, M.; Li, Z. Angew. Chem., Int. Ed. 2018, 57, 14174.
[120] Li, J.; Zhou, J.; Mao, Z.; Xie, Z.; Yang, Z.; Xu, B.; Liu, C.; Chen, X.; Ren, D.; Pan, H.; Shi, G.; Zhang, Y.; Chi, Z. Angew. Chem., Int. Ed. 2018, 57, 6449.
[121] Zhang, L.; Li, M.; Gao, Q.; Chen, C. Chin. J. Org. Chem. 2020, 40, 516(in Chinese). (张亮, 李猛, 高庆宇, 陈传峰, 有机化学, 2020, 40, 516.)
[122] Zhen, X.; Tao, Y.; An, Z.; Chen, P.; Xu, C.; Chen, R.; Huang, W.; Pu, K. Adv. Mater. 2017, 1606665.
[123] Yang, J.; Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, Y.; Li, J.; Peng, Q.; Pu, K.; Li, Z. Nat. Commun. 2018, 9, 840.
[124] Delgado, W.; Braun, C.; Boone, M.; Shynkaruk, O.; Qi, Y.; McDonald, R.; Ferguson, M.; Dara, P.; Almeida, S.; Aguiar, I.; Souza, G.; Alex, B.; He, G.; Rivard, E. ACS Appl. Mater. Interfaces 2018, 10, 12124.
[125] Koch, M.; Perumal, K.; Blacque, O.; Garg, J.; Saiganesh, R.; Kabilan, S.; Balasubramanian, K.; Venkatesan, K. Angew. Chem., Int. Ed. 2014, 53, 6378.
[126] Fang, M.; Yang, J.; Li, Z. Chin. J. Polym. Sci. 2019, 37, 383.
[127] DeRosa, C.; Kerr, C.; Fan, Z.; Kolpaczynska, M.; Mathew, A.; Evans, R.; Zhang, G.; Fraser, C. ACS Appl. Mater. Interfaces 2015, 7, 23633.
[128] Pramanik, S.; Bhalla, V.; Kumar, M. ACS Appl. Mater. Interfaces 2014, 6, 5930.
[129] Zhang, Y.; Han, T.; Gu, S.; Zhou, T.; Zhao, C.; Guo, Y.; Feng, X.; Tong, B.; Bing, J.; Shi, J.; Zhi, J.; Dong, Y. Chem.-Eur. J.2014, 20, 8856.
[130] Zhao, Y.; Lin, H.; Chen, M.; Yan, D. Ind. Eng. Chem. Res. 2014, 53, 3140.
[131] Ma, X.; Cheng, J.; Liu, J.; Zhou, X.; Xiang, H. New J. Chem. 2015, 39, 492.
[132] Yu, L.; Wu, Z.; Xie, G.; Zhong, C.; Zhu, Z.; Ma, D.; Yang, C. Chem. Commun. 2018, 54, 1379.
[133] Salini, P. S.; Derry Holaday, M. G.; Reddy, M. L.; Suresh, C. H.; Srinivasan, A. Chem. Commun. 2013, 49, 2213.
[134] Salini, P. S.; Thomas, A.; Sabarinathan, R.; Ramakrishnan, S.; Sreedevi, K.; Reddy, M.; Srinivasan, A. Chem.-Eur. J. 2011, 17, 6598.
[135] Karthik, G.; Krushna, P. V.; Srinivasan, A.; Chandrashekar, T. K. J. Org. Chem. 2013, 78, 8496.
[136] Ning, T.; Liu, L.; Jia, D.; Xie, X.; Wu, D. J. Photochem. Photobiol., A 2014, 291, 48.
[137] Zhang, Z.; Hashim, M. I.; Miljanic, O. S. Chem. Commun. 2017, 53, 10022.
[138] Shimizu, M.; Takeda, Y.; Higashi, M.; Hiyama, T. Angew. Chem., Int. Ed. Engl. 2009, 48, 3653.
[139] Chung, J.; An, B.; Hirato, F.; Kim, J.; Jinnai, H.; Park, S. J. Mater. Chem. 2010, 20, 7715.
[140] Wang, X.; He, D.; Huang, Y.; Fan, Q.; Wu, W.; Jiang, H. J. Org. Chem. 2018, 83, 5458.
[141] Keruckiene, R.; Guzauskas, M.; Narbutaitis, E.; Tsiko, U.; Volyniuk, D.; Chen, C.; Chiu, T.; Lin, C.; Lee, J.; Grazulevicius, J. V. Org. Electron. 2020, 78,105576.
[142] Kumari, N.; Naqvi, S.; Ahuja, M.; Bhardwaj, K.; Kumar, R. J. Mater. Sci.:Mater. Electron. 2020, 31, 4310.
[143] Chung, J. W.; Yoon, S. J.; Lim, S. J.; An, B. K.; Park, S. Y. Angew. Chem., Int. Ed. 2009, 48, 7030.
[144] Kim, J.; Chung, J.; Jung, Y.; Yoon, S.; An, B.; Huh, H.; Lee, O.; Park, S. J. Mater. Chem. 2010, 20, 10103.
[145] Chen, B.; Zhang, H.; Luo, W.; Nie, H.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. J. Mater. Chem. C 2017, 5, 960.
[146] Guo, J.; Hu, S.; Luo, W.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. Chem. Commun. 2017, 53, 1463
[147] Mallet, C.; Moussallem, C.; Faurie, A.; Allain, M.; Gohier, M.; Skene, W.; Frere, P. Chem.-Eur. J. 2015, 21, 7944.
[148] Yan, H.; Meng, X.; Li, B.; Ge, S.; Lu, Y. Dyes Pigm. 2017, 146, 479.
[149] Zhao, C.; Zhao, Y.; Pan, H.; Fu, G. Chem. Commun. 2011, 47, 5518.
[150] Liu, Y.; Zhang, Y.; Wu, X.; Lan, Q.; Chen, C.; Liu, S.; Chi, Z.; Jiang, L.; Chen, X.; Xu, J. J. Mater. Chem. C 2014, 2, 1068.
[151] Raju, T. B.; Gopikrishna, P.; Vaghasiya, J. V.; Soni, S. S.; Iyer, P. K. J. Photochem. Photobiol., A 2019, 376, 12.
[152] Ni, S.; Min, T.; Li, Y.; Zha, M.; Zhang, P.; Ho, C.; Li, K. Angew. Chem., Int. Ed. 2020, 132, 10265.
[153] Wang, S.; Wamg, F.; Li, C.; Li, T.; Cao, D.; Ma, X. Sci. China:Chem. 2018, 61, 1301.
[154] Morita, M.; Yamada, S.; Konno, T. New J. Chem. 2020, 44, 6704.
[155] Hu, M.; Feng, H.; Yuan, Y.; Zheng, Y.; Tang, B. Z. Coord. Chem. Rev. 2020, 416, 213329.
[156] Shen, G.; Gou, F.; Cheng, J.; Zhang, X.; Zhou, X.; Xiang, H. RSC Adv. 2017, 7, 40640.
[157] Song, F.; Xu, Z.; Zhang, Q.; Zhao, Z.; Zhang, H.; Zhao, W.; Qiu, Z.; Qi, C.; Zhang, H.; Sung, H.; Williams, I.; Lam, J.; Zhao, Z.; Qin, A.; Ma, D.; Tang, B. Z. Adv. Funct. Mater. 2018, 23, 180051.
[158] Zhao, N.; Gao, W.; Zhang, M.; Yang, J.; Zheng, X.; Li, Y.; Cui, R.; Yin, W.; Li, N. Mater. Chem. Front. 2019, 3, 1613.
[159] Li, X.; Shi, X.; Li, X.; Shi, D. Beilstein J. Org. Chem. 2019, 15, 2213.
[160] Gouverneur, V.; Szpera, R.; Moseley, D.; Smith, B.; Sterling, A. Angew. Chem., Int. Ed. 2019, 58, 14828.
[161] He, J.; Lou, S.; Xu, D. Chin. J. Org. Chem. 2016, 36, 1218(in Chinese). (何将旗, 娄绍杰, 许丹倩, 有机化学, 2016, 36, 1218.)
[162] Yang, J.; Li, Z. Chin. J. Org. Chem. 2019, 39, 3304(in Chinese). (杨杰, 李振, 有机化学, 2019, 39, 3304).
[163] Yang, J.; Chi, Z.; Zhu, W.; Tang, B. Z.; Li, Z. Sci. China:Chem. 2019, 62, 1090.
[164] Zhang, J.; Liu, H.; Meng, L. Chin. J. Org. Chem. 2019, 39, 3132(in Chinese). (张继东, 刘鸿泽, 孟丽, 有机化学, 2019, 39, 3132).
[165] Guan, X.; Li, Z.; Wang, L.; Liu, M.; Wang, K.; Yang, X.; Li, Y.; Hu, L.; Zhao, X.; Lai, S.; Lei, Z. Acta Chim. Sinica 2019, 77, 1268(in Chinese). (关晓琳, 李志飞, 王林, 刘美娜, 王凯龙, 杨学琴, 李亚丽, 胡丽丽, 赵小龙, 来守军, 雷自强, 化学学报, 2019, 77, 1268.)
文章导航

/