综述与进展

AlCl3促进的有机反应研究进展

  • 袁康宁 ,
  • 赵玉英 ,
  • 常宏宏 ,
  • 田俊 ,
  • 高文超
展开
  • a 太原理工大学生物医学工程学院 太原 030024;
    b 太原科技大学化学与生物工程学院 太原 030021

收稿日期: 2020-04-26

  修回日期: 2020-05-16

  网络出版日期: 2020-06-01

基金资助

国家自然科学基金(No.21901179)、山西省重点研发计划(国际合作)(No.201803D421093)、山西省自然科学基金(No.201901D211052)以及山西省留学回国人员科研教研(Nos.HGKY2019029,2020-053)资助项目.

Recent Advances in AlCl3-Promoted Organic Reactions

  • Yuan Kangning ,
  • Zhao Yuying ,
  • Chang Honghong ,
  • Tian Jun ,
  • Gao Wenchao
Expand
  • a College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024;
    b School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021

Received date: 2020-04-26

  Revised date: 2020-05-16

  Online published: 2020-06-01

Supported by

Project supported by the National Natural Science Foundation of China (No. 21901179), the Key Research and Development Program of Shanxi Province (International Cooperation) (No. 201803D421093), the Natural Science Foundation of Shanxi Province (No. 201901D211052) and the Research Project Supported by Shanxi Scholarship Council of China (Nos. HGKY2019029, 2020-053).

摘要

三氯化铝(AlCl3)作为硬路易斯酸的典型代表,其促进的有机转化近些年来越来越受到人们的关注.总结了近10年来通过三氯化铝对含卤素、氧、氮、硫原子化合物及π键的活化完成的多种有机转化,并对所涉及的相关反应及活化机制进行了系统介绍,同时对三氯化铝新的应用领域进行了展望.

本文引用格式

袁康宁 , 赵玉英 , 常宏宏 , 田俊 , 高文超 . AlCl3促进的有机反应研究进展[J]. 有机化学, 2020 , 40(9) : 2607 -2625 . DOI: 10.6023/cjoc202004042

Abstract

As a representative hard Lewis acid, aluminum trichloride (AlCl3) has attracted more and more attention in the past decades. The reactions promoted via the activation of halogens, oxygen, nitrogen, sulfur compounds and π-bonds with AlCl3 are systematically reviewed, and some recent progress in last ten years is updated as well. Moreover, the new application fields of AlCl3 are prospected.

参考文献

[1] Chen, Z.; Qiu, X. L.; Yan, W.; Yang, H. N.; Ji, S. C.; Chen, M. H. Adv. Earth Sci. 2003, 18, 545(in Chinese). (陈忠, 丘学林, 颜文, 杨惠宁, 古森昌, 陈木宏, 地球科学进展, 2003, 18, 545.)
[2] Ashkenazi, D. Technol. Forecast. Soc. Change 2019, 143, 101.
[3] (a) Curtiss, L. A. Int. J. Quantum Chem. 1978, 14, 709.
(b) Bigelow, M. J. J. Chem. Educ. 1969, 46, 495.
(c) Aarset, K.; Shen, Q.; Thomassen, H.; Richardson, A. D.; Hedberg, K. J. Phys. Chem. A 1999, 103, 1644.
[4] Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533.
[5] Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.
[6] Zhao, Y.; Yang, Z.; Tang, L. Chin. J. Org. Chem. 2003, 23, 1219(in Chinese). (赵莹, 杨志, 汤林, 有机化学, 2003, 23, 1219.)
[7] Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, San Diego, CA, 2005.
[8] Chong, H. S.; Chen, Y. W. Org. Lett. 2013, 15, 5912.
[9] Rossiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771.
[10] Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429.
[11] Beak, P.; Berger, K. R. J. Am. Chem. Soc. 1980, 102, 3848.
[12] Shono, T.; Nishiguchi, I.; Sasaki, M.; Ikeda, H.; Kurita, M. J. Org. Chem. 1983, 48, 2503.
[13] Hoffmann, H. M. R.; Tsushima, T. J. Am. Chem. Soc. 1977, 99, 6008.
[14] Tanaka, S.; Kunisawa, T.; Yoshii, Y.; Hattori, T. Org. Lett. 2019, 21, 8509.
[15] Koo, H.; Kim, H. Y.; Oh, K. Org. Chem. Front. 2019, 6, 1868.
[16] Xu, S. B.; Li, C. J.; Jia, X. S.; Li, J. J. Org. Chem. 2014, 79, 11161.
[17] Devi, N. S.; Singh, S. J.; Devi, L. R.; Singh, O. M. Tetrahedron Lett. 2013, 54, 183.
[18] Chen, L.; Teng, W.; Geng, X. L.; Zhu, Y. F.; Guan, Y. H.; Fan, X. H. Appl. Organomet. Chem. 2017, 31, 3863.
[19] Xu, X. M.; Lei, C. H.; Tong, S.; Zhu, J. P.; Wang, M. X. Org. Chem. Front. 2018, 5, 3138.
[20] Aleksić, M.; Bertoša, B.; Nhili, R.; Uzelac, L.; Jarak, I.; Depauw, S.; David-Cordonnier, M. H.; Kralj, M.; Tomić, S.; Karminski-Zamola, G. J. Med. Chem. 2012, 55, 5044.
[21] Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.
[22] Paul, S.; Shrestha, R.; Edison, T. N. J. I.; Lee, Y. R.; Kim, S. H. Adv. Synth. Catal. 2016, 358, 3050.
[23] Wang, Z.; Xue, L.; He, Y.; Weng, L.; Fang, L. J. Org. Chem. 2014, 79, 9628.
[24] Gao, W. C.; Liu, T.; Cheng, Y. F.; Chang, H. H.; Li, X.; Zhou, R.; Wei, W. L.; Qiao, Y. J. Org. Chem. 2017, 82, 13459.
[25] Gao, W. C.; Cheng, Y. F.; Chang, H. H.; Li, X.; Wei, W. L.; Yang, P. J. Org. Chem. 2019, 84, 4312.
[26] Yu, X. Z.; Shang, Y. Z.; Cheng, Y. F.; Tian, J.; Niu, Y.; Gao, W. C. Org. Biomol. Chem. 2020, 18, 1806.
[27] Zhang, L.; Li, X. J.; Wang, Z. W.; Zhao, J. W.; Wang, J. J.; Han, J. W.; Zhu, S. Z. Tetrahedron 2013, 69, 7975.
[28] Wang, X. N.; Krenske, E. H.; Johnston, R. C.; Houk, K. N.; Hsung, R. P. J. Am. Chem. Soc. 2015, 137, 5596.
[29] Zhu,Y. Y.; Zhang, M. L.; Li, T.; Song, X. X. ChemistrySelect 2019, 4, 10838.
[30] Cao, D. P.; Zhang, K. P.; An, R.; Xu, H.; Hao, S.; Yang, X. G.; Hou, Z.; Guo, C. Org. Lett. 2019, 21, 8948.
[31] Tskhovrebov, A. G.; Naested, L. C. E.; Solari, E.; Scopelliti, R.; Severin, K. Angew. Chem., Int. Ed. 2015, 54, 1289.
[32] Zhu, Z. Q.; Bao, P.; Wang, T. T.; Huang, Z. Z. Chin. J. Chem. 2014, 32, 1176.
[33] (a) Zhou, J. H.; Jiang, B.; Meng, F. F.; Xu, Y. H.; Loh, T. P. Org. Lett. 2015, 17, 4432.
(b) Yepes, D.; Pérez, P.; Jaquea, P.; Fernández, I. Org. Chem. Front. 2017, 4, 1390.
[34] Masson, G; Lalli, C.; Benohoud, M.; Dagousset, G. Chem. Soc. Rev. 2013, 42, 902.
[35] Jian, W. J.; Qian, B.; Bao, H. L.; Li, D. L. Tetrahedron 2017, 73, 4039.
[36] Yang, G.; Shen, Y.; Li, K.; Sun, Y.; Hua, Y. J. Org. Chem. 2011, 76, 229.
[37] Yang, G.; Sun, Y.; Shen, Y.; Chai, Z.; Zhou, S.; Chu, J.; Chai, J. J. Org. Chem. 2013, 78, 5393.
[38] Shen, Y.; Chai, J.; Yang, G.; Chen, W.; Chai, Z. J. Org. Chem. 2018, 83, 12549.
[39] Yang, G.; Wang, T.; Chai, J.; Chai, Z. Eur. J. Org. Chem. 2015, 2015, 1040.
[40] Augustin, A. U.; Sensse, M.; Jones, P. G.; Werz, D. B. Angew. Chem., Int. Ed. 2017, 56, 14293.
[41] Ge, J. J.; Yao, C. Z.; Wang, M. M.; Zheng, H. X.; Kang, Y. B.; Li, Y. D. Org. Lett. 2016, 18, 228.
[42] Wang, Z.; Yuan, Z. H.; Han, X. Y.; Weng, Z. Q. Adv. Synth. Catal. 2018, 360, 2078.
[43] (a) Beck, B.; Magnin-Lachaux, M. Herdtweck, E.; Dömling, A. Org. Lett. 2001, 3, 2875.
(b) Kaim, L. E.; Gizolme, M.; Grimaud, L. Org. Lett. 2006, 8, 5021.
[44] Lyu, L. Y.; Xie, H.; Mu, H. X.; He, Q. J.; Bian, Z. X.; Wang, J. Org. Chem. Front. 2015, 2, 815.
[45] Hu, Q. Q.; Liu, Y.; Deng, X. C.; Li, Y. J.; Chen, Y. F. Adv. Synth. Catal. 2016, 358, 1689.
[46] Dimitrov, P.; Emert, J.; Faust, R. Macromolecules 2012, 45, 3318.
[47] Chen, J.; Mao, J.-C.; He, Y.; Shi, D. Q.; Zou, B. Y.; Zhang, G. Q. Tetrahedron 2015, 71, 9496.
[48] Zhai, J. J.; Yao, Z. G.; Xu, F. Chin. J. Org. Chem. 2014, 34, 1639(in Chinese). (翟娇娇, 姚志刚, 徐凡, 有机化学, 2014, 34, 1639.)
[49] Liu, G. Q.; Cui, B.; Xu, R.; Li, Y. M. J. Org. Chem. 2016, 81, 5144.
[50] Kumar, K. S.; Meesa, S. R.; Rajeshama, B.; Bhaskera, B.; Ashfaq, M. A.; Khan, A. A.; Rao, S. S.; Pal, M. Bioorg. Med. Chem. 2012, 20, 1711.
[51] Nakhi, A.; Archana, S.; Seerapu, G. P. K.; Chennubhotla, K. S.; Kumar, K. L.; Kulkarni, P.; Haldar, D.; Pal, M. Chem. Commun. 2013, 49, 6268.
[52] Shiro, D.; Fujiwara, S.; Tsuda, S.; Iwasaki, T.; Kuniyasu, H.; Kambe, N. Tetrahedron Lett. 2015, 56, 1531.
[53] Hachiya, I.; Nakamura, K.; Hara, M.; Sato, K.; Shimizu, M. J. Org. Chem. 2019, 84, 14770.
[54] Tadeusz. S.; Jagodziski, T. S. Chem. Rev. 2003, 103, 197.
[55] Alla, S. K.; Sadhu, P.; Punniyamurthy, T. J. Org. Chem. 2014, 79, 7502.
[56] Kumar, K.; Konar, D.; Goyal, S.; Gangar, M.; Chouhan, M.; Rawal, R. K.; Nair, V. A. ChemistrySelect 2016, 1, 3228.
[57] Liu, X.; Zhang, S. B.; Dong, Z. B. Eur. J. Org. Chem. 2018, 39, 5406.
[58] Yamamoto, Y. J. Org. Chem. 2007, 72, 7817.
[59] Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 6074.
[60] Nikonov, G. I. ACS Catal. 2017, 7, 7257.
[61] Kato, N.; Tamura, Y.; Kashiwabara, T.; Sanji, T.; Tanaka, M. Organometallics 2010, 29, 5274.
文章导航

/