综述与进展

过渡金属催化不对称氧化反应方法研究进展

  • 姚彪 ,
  • 巫佳浩 ,
  • 汪钰 ,
  • 江焕峰
展开
  • 华南理工大学化学与化工学院 广东省功能分子工程重点实验室 广州 510641

收稿日期: 2020-05-31

  修回日期: 2020-07-06

  网络出版日期: 2020-08-11

基金资助

国家重点研发计划(No.2016YFA06002900)和广东省重点领域研发(No.2020B010188001)资助项目.

Methods of Transition Metal-Catalyzed Asymmetric Oxidation

  • Yao Biao ,
  • Wu Jiahao ,
  • Wang Yu ,
  • Jiang Huanfeng
Expand
  • Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641

Received date: 2020-05-31

  Revised date: 2020-07-06

  Online published: 2020-08-11

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFA06002900) and the Key Research and Development Program of Guangdong Province (No. 2020B010188001).

摘要

过渡金属催化的不对称氧化反应,作为不对称合成的重要研究内容之一,为手性天然产物和药物的合成提供了实用便捷途径,因此其方法研究备受人们关注.重点介绍了近年来过渡金属催化的烯烃不对称氧化官能团化反应、C—H键不对称氧化反应、不对称BV氧化反应和硫醚不对称氧化反应等研究进展,并展望其未来发展趋势.

本文引用格式

姚彪 , 巫佳浩 , 汪钰 , 江焕峰 . 过渡金属催化不对称氧化反应方法研究进展[J]. 有机化学, 2020 , 40(10) : 3044 -3064 . DOI: 10.6023/cjoc202005095

Abstract

Transition metal-catalyzed asymmetric oxidation, as one of important research targets of chiral synthesis, provides a direct, practical route for the synthesis of various chiral bioactive products and drugs, and has received much attention. The recent progress of the methods of transition metal-catalyzed asymmetric oxidation, especially, asymmetric oxidative functionalization of olefins, C-H bond asymmetric oxidation reaction, asymmetric BV oxidation and sulfide asymmetric oxidation is elaborated. Outlook of those issuesis is also discussed.

参考文献

[1] (a) Saisaha, P.; de Boerb, J. W.; Browne, W. R. Chem. Soc. Rev. 2013, 42, 2059.
(b) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Chem. Rev. 2014, 114, 8199.
(c) Liu, C.; Wen, K.-G.; Zeng, X.-P.; Peng, Y.-Y. Adv. Synth. Catal. 2020, 362, 1015.
(f) Bryliakov, K. P. Chem. Rev. 2017, 117, 11406.
[2] Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
[3] (a) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801.
(b) Irie, R.; Noda, K.; Ito, Y.; Matusumoto, N.:Katsuki, T. Tetrahedron Lett. 1990, 31, 7345.
[4] Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.
(b) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 451.
[5] Ji, N.; Yuan, J.; Liu, M.; Lan, T.; He, W. Chem. Commun. 2016, 52, 7731.
[6] Wang, C.; Yamamoto, H. J. Am. Chem. Soc. 2014, 136, 1222.
[7] Bhadra, S.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2015, 137, 15612.
[8] (a) Chu, Y.; Liu, X.; Li, W.; Hu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 1996.
(b) Chu, Y.; Hao, X.; Lin, L.; Chen, W.; Li, W.; Tan, F.; Liu, X.; Feng, X. Adv. Synth. Catal. 2014, 356, 2214.
[9] Clarasό, C.; Vicens, L.; Polo, A.; Costas, M. Org. Lett. 2019, 21, 2430.
[10] Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296.
[11] Koya, S.; Nishioka, Y.; Mizoguchi, H.; Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed. 2012, 51, 8243.
[12] Kobayashi, Y.; Obayashi, R.; Watanabe, Y.; Miyazaki, H.; Miyata, I.; Suzuki, Y.; Yoshida, Y.; Shioiri, T.; Matsugi, M. Eur. J. Org. Chem. 2019, 2019, 2401.
[13] Farokhi, A.; Berijani, K.; Hosseini-Monfared, H. Catal. Lett. 2018, 148, 2608.
[14] Jat, J. L.; De, S. R.; Kumar, G.; Adebesin, A. M.; Gandham, S. K.; Falck, J. R. Org. Lett. 2015, 17, 1058.
[15] Zhu, H.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 1766.
[16] Qi, X.; Chen, C.; Hou, C.; Fu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 7415.
[17] (a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett., 2004, 6, 1573.
(b) Chemler, S. R.; Karyakarte, S. D.; Khoder, Z. M. J. Org. Chem. 2017, 82, 11311.
[18] Fu, S.; Yang, H.; Li, G.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2015, 17, 1018.
[19] Zhang, W.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 5336.
[20] Bai, Z.; Zheng, S.; Bai, Z.; Song, F.; Wang, H.; Peng, Q.; Chen, G.; He, G. ACS Catal. 2019, 9, 6502.
[21] (a) Huang, L.; Wang, Q.; Liu, X.; Jiang, H. Angew. Chem., Int. Ed. 2012, 51, 5696.
(b) Zhang, Z.; Wu, W.; Liao, J.; Li, J.; Jiang, H. Chem.-Eur. J. 2015, 21, 6708.
[22] (a) Wu, M.-S.; Fan, T.; Chen, S.-S.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2018, 20, 2485.
(b) Zhang, T.; Shen, H.-C.; Xu, J.-C.; Fan, T.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2019, 21, 2048.
(c) Chen, S.-S.; Wu, M.-S.; Han, Z.-Y. Angew. Chem., Int. Ed. 2017, 56, 6641.
[23] Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Org. Lett. 2019, 21, 5015.
[24] Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480.
[25] Mikami, K.; Hatano, M.; Terada, M. Chem. Lett. 1999, 28, 55.
[26] Schiffner, J. A.; Machotta, A. B.; Oestreich, M. Synlett 2008, 15, 2271.
[27] Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 15668.
[28] Akiyama, K.; Wakabayashi, K.; Mikami, K. Adv. Synth. Catal. 2005, 347, 1569
[29] Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O'Neill, J.; Jung, K. W. Org. Lett. 2007, 9, 3933.
[30] Chen, G.; Cao, J.; Wang, Q.; Zhu, J. Org. Lett. 2020, 22, 322.
[31] (a) Walker, S. E.; Lamb, C. J. C.; Beattie, N. A.; Nikodemiak, P.; Lee, A.-L. Chem. Commun. 2015, 51, 4089.
(b) Lamb, C. J. C.; Vilela, F.; Lee, A.-L. Org. Lett. 2019, 21, 8689.
[32] (a) Mei, T.; Patel, H.; Sigman, M. S. Nature 2014, 508, 340.
(b) Chen, Z.-M.; Hilton, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 11461.
[33] (a) Shi, B. F.; Zhang, Y. H.; Lam, J. K.; Wang, D. H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 460.
(b) Xiao, K.-J.; Chu, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2856.
[34] (a) Pi, C.; Li, Y.; Cui, X. L.; Zhang, H.; Han, Y. B.; Wu, Y. J. Chem. Sci. 2013, 4, 2675.
(b) Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 1385.
[35] Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.
[36] McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830.
[37] (a) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130.
(b) He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009, 11, 5626.
(c) Du, W.; Gu, Q.; Li, Y.; Lin, Z.; Yang, D. Org. Lett. 2017, 19, 316.
[38] Bao, X.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 1995.
[39] Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 7587.
[40] Sen, A.; Takenaka, K.; Sasai, H. Org. Lett. 2018, 20, 6827.
[41] Allen, J. R.; Bahamonde, A.; Furukawa, Y.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 8670.
[42] (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
(b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242.
(c) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230.
(d) Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Science 2017, 355, 499.
[43] (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947.
(b) Butler, A.; Sandy, M. Nature 2009, 460, 848.
[44] Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196.
(b) Sun, W.; Sun, Q. Acc. Chem. Rev. 2019, 52, 2370.
[45] Shi, B. F.; Maugel, N.; Zhang, Y. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
[46] Xiao, K.-J.; Chu, L.; Chen, G.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 7796.
[47] Cheng, X. F.; Li, Y.; Su, Y. M.; Yin, F.; Wang, J. Y.; Sheng, J.; Vora, H. U.; Wang, X. S.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 1236.
[48] Du, Z. J.; Guan, J.; Wu, G. J.; Xu, P.; Gao, L. X.; Han, F. S. J. Am. Chem. Soc. 2015, 137, 632.
[49] Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Angew. Chem., Int. Ed. 2017, 56, 116.
[50] He, Y.-P.; Wu, H.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2020, 59, 2105.
[51] Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.
[52] (a) Gao, D. W.; Shi, Y. C.; Gu, Q.; Zhao, Z. L.; You, S. L. J. Am. Chem. Soc. 2013, 135, 86.
(b) Shi, Y. C.; Yang, R. F.; Gao, D. W.; You, S. L. Beilstein J. Org. Chem. 2013, 9, 1891.
[53] Zhang, H.; Cui, X. L.; Yao, X. N.; Wang, H.; Zhang, J. Y.; Wu, Y. J. Org. Lett. 2012, 14, 3012.
[54] (a) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544.
(b) Cai, Z.-J.; Liu, C.-X.; Gu, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 2149.
[55] Wang, S.-G.; Liu, Y.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 18136.
[56] Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133, 19598.
[57] Xiao, K. J.; Lin, D. W.; Miura, M.; Zhu, R. Y.; Gong, W.; Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 8138.
[58] Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2019, 58, 2134.
[59] Yin, C.; Cao, W.; Lin, L.; Liu, X.; Feng, X. Adv. Synth. Catal. 2013, 355, 1924.
[60] Yang, F.; Zhao, J.; Tang, X.; Zhou, G.; Song, W.; Meng, Q. Org. Lett. 2017, 19, 448.
[61] Ding, W.; Lu, L.-Q.; Zhou, Q.-Q.; Wei, Y.; Chen, J.-R.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 63.
[62] Yang, F.; Zhao, J.; Tang, X.; Wu, Y.; Yu, Z.; Meng, Q. Adv. Synth. Catal. 2019, 361, 1673.
[63] Banerjee, A.; Yamamoto, H. Org. Lett. 2017, 19, 4363.
[64] DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.
[65] Kharasch, M. S.; Sosnovsky, G. J. Am. Chem. Soc. 1958, 80, 756.
[66] Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014.
[67] Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425.
[68] Yang, C.; Zhang, C.; Gu, Q.-S.; Fang, J.-H.; Su, X.-L.; Ye, L.; Sun, Y.; Tian, Y.; Li, Z.-L.; Liu, X.-Y. Nat. Catal. 2020, 3, 539.
[69] Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615.
[70] (a) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448.
(b) Liu, W.; Ali, S. Z.; Ammann, S. E.; White, M. C. J. Am. Chem. Soc. 2018, 140, 10658.
(b) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.
(c) Ma, R.; Young, J.; Promontorio, R.; Dannheim, F. M.; Pattillo, C. C.; White, M. C. J. Am. Chem. Soc. 2019, 141, 9468.
[71] Li, J.; Ren, Y.; Yue, C.; Fan, Y.; Qi, C.; Jiang, H. ACS Appl. Mater. Interfaces 2018, 10, 36047.
[72] Li, J.; Zhang, Z.; Wu, L.; Zhang, W.; Chen, P.; Lin, Z.; Liu, G. Nature 2019, 574, 516.
[73] Posevins, D.; Qiu, Y.; Bäckvall, J.-E. J. Am. Chem. Soc. 2018, 140, 3210.
[74] Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Wu, W.; Liu, Y.; Lin, L.; Feng, X. Org. Lett. 2014, 16, 3938.
[75] Bolm, C.; Schlingloff, G.; Weickhardt, K. Angew. Chem., Int. Ed. 1994, 33, 1848.
[76] Lopp, M.; Paju, A.; Kanger, T.; Pehk, T. Tetrahedron Lett. 1996, 37, 7583.
[77] Bianchini, G.; Cavarzan, A.; Scarso, A.; Strukul, G. Green Chem. 2009, 11, 1517.
[78] Wu, W.; Cao, W.; Hu, L.; Su, Z.; Liu, X.; Feng, X. Chem. Sci. 2019, 10, 7003.
[79] Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang J. J. Am. Chem. Soc. 2018, 140, 3467.
[80] Barman, S.; Patil, S.; Levy, C. J. Chem. Lett. 2012, 41, 974.
[81] Zong, L.; Wang, C.; Putra Moeljadi, A. M.; Ye, X.; Ganguly, R.; Li, Y.; Hirao, H.; Tan, C.-H. Nat. Commun. 2016, 7, 13455.
[82] (a) Dai, W.; Li, G.; Wang, L.; Chen, B.; Shang, S.; Lv, Y.; Gao, S. RSC Adv. 2014, 4, 46545.
(b) Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. ACS Catal. 2017, 7, 4890.
[83] (a) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736.
(b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155.
(c) Liang, Y.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640.
(d) Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc. Chem. Res. 2018, 51, 1092.
(e) Li, J.; Liao, J.; Ren, Y.; Liu, C.; Yue, C.; Lu, J.; Jiang, H. Angew. Chem., Int. Ed. 2019, 58, 17148.
文章导航

/