有机化学 ›› 2020, Vol. 40 ›› Issue (10): 3044-3064.DOI: 10.6023/cjoc202005095 上一篇 下一篇
所属专题: 黄乃正院士七十华诞专辑
综述与进展
姚彪, 巫佳浩, 汪钰, 江焕峰
收稿日期:
2020-05-31
修回日期:
2020-07-06
发布日期:
2020-08-11
通讯作者:
江焕峰
E-mail:jianghf@scut.edu.cn
基金资助:
Yao Biao, Wu Jiahao, Wang Yu, Jiang Huanfeng
Received:
2020-05-31
Revised:
2020-07-06
Published:
2020-08-11
Supported by:
文章分享
过渡金属催化的不对称氧化反应,作为不对称合成的重要研究内容之一,为手性天然产物和药物的合成提供了实用便捷途径,因此其方法研究备受人们关注.重点介绍了近年来过渡金属催化的烯烃不对称氧化官能团化反应、C—H键不对称氧化反应、不对称BV氧化反应和硫醚不对称氧化反应等研究进展,并展望其未来发展趋势.
姚彪, 巫佳浩, 汪钰, 江焕峰. 过渡金属催化不对称氧化反应方法研究进展[J]. 有机化学, 2020, 40(10): 3044-3064.
Yao Biao, Wu Jiahao, Wang Yu, Jiang Huanfeng. Methods of Transition Metal-Catalyzed Asymmetric Oxidation[J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3044-3064.
[1] (a) Saisaha, P.; de Boerb, J. W.; Browne, W. R. Chem. Soc. Rev. 2013, 42, 2059. (b) Zhu, Y.; Wang, Q.; Cornwall, R. G.; Shi, Y. Chem. Rev. 2014, 114, 8199. (c) Liu, C.; Wen, K.-G.; Zeng, X.-P.; Peng, Y.-Y. Adv. Synth. Catal. 2020, 362, 1015. (f) Bryliakov, K. P. Chem. Rev. 2017, 117, 11406. [2] Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974. [3] (a) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112, 2801. (b) Irie, R.; Noda, K.; Ito, Y.; Matusumoto, N.:Katsuki, T. Tetrahedron Lett. 1990, 31, 7345. [4] Jacobsen, E. N.; Markó, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968. (b) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. 1996, 35, 451. [5] Ji, N.; Yuan, J.; Liu, M.; Lan, T.; He, W. Chem. Commun. 2016, 52, 7731. [6] Wang, C.; Yamamoto, H. J. Am. Chem. Soc. 2014, 136, 1222. [7] Bhadra, S.; Akakura, M.; Yamamoto, H. J. Am. Chem. Soc. 2015, 137, 15612. [8] (a) Chu, Y.; Liu, X.; Li, W.; Hu, X.; Lin, L.; Feng, X. Chem. Sci. 2012, 3, 1996. (b) Chu, Y.; Hao, X.; Lin, L.; Chen, W.; Li, W.; Tan, F.; Liu, X.; Feng, X. Adv. Synth. Catal. 2014, 356, 2214. [9] Clarasό, C.; Vicens, L.; Polo, A.; Costas, M. Org. Lett. 2019, 21, 2430. [10] Zhang, W.; Jacobsen, E. N. J. Org. Chem. 1991, 56, 2296. [11] Koya, S.; Nishioka, Y.; Mizoguchi, H.; Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed. 2012, 51, 8243. [12] Kobayashi, Y.; Obayashi, R.; Watanabe, Y.; Miyazaki, H.; Miyata, I.; Suzuki, Y.; Yoshida, Y.; Shioiri, T.; Matsugi, M. Eur. J. Org. Chem. 2019, 2019, 2401. [13] Farokhi, A.; Berijani, K.; Hosseini-Monfared, H. Catal. Lett. 2018, 148, 2608. [14] Jat, J. L.; De, S. R.; Kumar, G.; Adebesin, A. M.; Gandham, S. K.; Falck, J. R. Org. Lett. 2015, 17, 1058. [15] Zhu, H.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 1766. [16] Qi, X.; Chen, C.; Hou, C.; Fu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2018, 140, 7415. [17] (a) Sherman, E. S.; Chemler, S. R.; Tan, T. B.; Gerlits, O. Org. Lett., 2004, 6, 1573. (b) Chemler, S. R.; Karyakarte, S. D.; Khoder, Z. M. J. Org. Chem. 2017, 82, 11311. [18] Fu, S.; Yang, H.; Li, G.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2015, 17, 1018. [19] Zhang, W.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 5336. [20] Bai, Z.; Zheng, S.; Bai, Z.; Song, F.; Wang, H.; Peng, Q.; Chen, G.; He, G. ACS Catal. 2019, 9, 6502. [21] (a) Huang, L.; Wang, Q.; Liu, X.; Jiang, H. Angew. Chem., Int. Ed. 2012, 51, 5696. (b) Zhang, Z.; Wu, W.; Liao, J.; Li, J.; Jiang, H. Chem.-Eur. J. 2015, 21, 6708. [22] (a) Wu, M.-S.; Fan, T.; Chen, S.-S.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2018, 20, 2485. (b) Zhang, T.; Shen, H.-C.; Xu, J.-C.; Fan, T.; Han, Z.-Y.; Gong, L.-Z. Org. Lett. 2019, 21, 2048. (c) Chen, S.-S.; Wu, M.-S.; Han, Z.-Y. Angew. Chem., Int. Ed. 2017, 56, 6641. [23] Zhang, G.; Fu, L.; Chen, P.; Zou, J.; Liu, G. Org. Lett. 2019, 21, 5015. [24] Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S. J. Am. Chem. Soc. 2019, 141, 14480. [25] Mikami, K.; Hatano, M.; Terada, M. Chem. Lett. 1999, 28, 55. [26] Schiffner, J. A.; Machotta, A. B.; Oestreich, M. Synlett 2008, 15, 2271. [27] Zhang, C.; Santiago, C. B.; Crawford, J. M.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 15668. [28] Akiyama, K.; Wakabayashi, K.; Mikami, K. Adv. Synth. Catal. 2005, 347, 1569 [29] Yoo, K. S.; Park, C. P.; Yoon, C. H.; Sakaguchi, S.; O'Neill, J.; Jung, K. W. Org. Lett. 2007, 9, 3933. [30] Chen, G.; Cao, J.; Wang, Q.; Zhu, J. Org. Lett. 2020, 22, 322. [31] (a) Walker, S. E.; Lamb, C. J. C.; Beattie, N. A.; Nikodemiak, P.; Lee, A.-L. Chem. Commun. 2015, 51, 4089. (b) Lamb, C. J. C.; Vilela, F.; Lee, A.-L. Org. Lett. 2019, 21, 8689. [32] (a) Mei, T.; Patel, H.; Sigman, M. S. Nature 2014, 508, 340. (b) Chen, Z.-M.; Hilton, M. J.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 11461. [33] (a) Shi, B. F.; Zhang, Y. H.; Lam, J. K.; Wang, D. H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 460. (b) Xiao, K.-J.; Chu, L.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2856. [34] (a) Pi, C.; Li, Y.; Cui, X. L.; Zhang, H.; Han, Y. B.; Wu, Y. J. Chem. Sci. 2013, 4, 2675. (b) Huang, Y.; Pi, C.; Cui, X.; Wu, Y. Adv. Synth. Catal. 2020, 362, 1385. [35] Zheng, J.; Cui, W.-J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242. [36] McDonald, R. I.; White, P. B.; Weinstein, A. B.; Tam, C. P.; Stahl, S. S. Org. Lett. 2011, 13, 2830. [37] (a) Yip, K.-T.; Yang, M.; Law, K.-L.; Zhu, N.-Y.; Yang, D. J. Am. Chem. Soc. 2006, 128, 3130. (b) He, W.; Yip, K.-T.; Zhu, N.-Y.; Yang, D. Org. Lett. 2009, 11, 5626. (c) Du, W.; Gu, Q.; Li, Y.; Lin, Z.; Yang, D. Org. Lett. 2017, 19, 316. [38] Bao, X.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 1995. [39] Kou, X.; Shao, Q.; Ye, C.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 7587. [40] Sen, A.; Takenaka, K.; Sasai, H. Org. Lett. 2018, 20, 6827. [41] Allen, J. R.; Bahamonde, A.; Furukawa, Y.; Sigman, M. S. J. Am. Chem. Soc. 2019, 141, 8670. [42] (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J. Q. Chem. Soc. Rev. 2009, 38, 3242. (c) Liao, K.; Negretti, S.; Musaev, D. G.; Bacsa, J.; Davies, H. M. L. Nature 2016, 533, 230. (d) Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Science 2017, 355, 499. [43] (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947. (b) Butler, A.; Sandy, M. Nature 2009, 460, 848. [44] Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196. (b) Sun, W.; Sun, Q. Acc. Chem. Rev. 2019, 52, 2370. [45] Shi, B. F.; Maugel, N.; Zhang, Y. H.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 4882. [46] Xiao, K.-J.; Chu, L.; Chen, G.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 7796. [47] Cheng, X. F.; Li, Y.; Su, Y. M.; Yin, F.; Wang, J. Y.; Sheng, J.; Vora, H. U.; Wang, X. S.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 1236. [48] Du, Z. J.; Guan, J.; Wu, G. J.; Xu, P.; Gao, L. X.; Han, F. S. J. Am. Chem. Soc. 2015, 137, 632. [49] Zhang, H.-H.; Wang, C.-S.; Li, C.; Mei, G.-J.; Li, Y.; Shi, F. Angew. Chem., Int. Ed. 2017, 56, 116. [50] He, Y.-P.; Wu, H.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2020, 59, 2105. [51] Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527. [52] (a) Gao, D. W.; Shi, Y. C.; Gu, Q.; Zhao, Z. L.; You, S. L. J. Am. Chem. Soc. 2013, 135, 86. (b) Shi, Y. C.; Yang, R. F.; Gao, D. W.; You, S. L. Beilstein J. Org. Chem. 2013, 9, 1891. [53] Zhang, H.; Cui, X. L.; Yao, X. N.; Wang, H.; Zhang, J. Y.; Wu, Y. J. Org. Lett. 2012, 14, 3012. [54] (a) Gao, D.-W.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 2544. (b) Cai, Z.-J.; Liu, C.-X.; Gu, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2019, 58, 2149. [55] Wang, S.-G.; Liu, Y.; Cramer, N. Angew. Chem., Int. Ed. 2019, 58, 18136. [56] Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J. Q. J. Am. Chem. Soc. 2011, 133, 19598. [57] Xiao, K. J.; Lin, D. W.; Miura, M.; Zhu, R. Y.; Gong, W.; Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2014, 136, 8138. [58] Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2019, 58, 2134. [59] Yin, C.; Cao, W.; Lin, L.; Liu, X.; Feng, X. Adv. Synth. Catal. 2013, 355, 1924. [60] Yang, F.; Zhao, J.; Tang, X.; Zhou, G.; Song, W.; Meng, Q. Org. Lett. 2017, 19, 448. [61] Ding, W.; Lu, L.-Q.; Zhou, Q.-Q.; Wei, Y.; Chen, J.-R.; Xiao, W.-J. J. Am. Chem. Soc. 2017, 139, 63. [62] Yang, F.; Zhao, J.; Tang, X.; Wu, Y.; Yu, Z.; Meng, Q. Adv. Synth. Catal. 2019, 361, 1673. [63] Banerjee, A.; Yamamoto, H. Org. Lett. 2017, 19, 4363. [64] DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094. [65] Kharasch, M. S.; Sosnovsky, G. J. Am. Chem. Soc. 1958, 80, 756. [66] Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014. [67] Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425. [68] Yang, C.; Zhang, C.; Gu, Q.-S.; Fang, J.-H.; Su, X.-L.; Ye, L.; Sun, Y.; Tian, Y.; Li, Z.-L.; Liu, X.-Y. Nat. Catal. 2020, 3, 539. [69] Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615. [70] (a) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448. (b) Liu, W.; Ali, S. Z.; Ammann, S. E.; White, M. C. J. Am. Chem. Soc. 2018, 140, 10658. (b) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274. (c) Ma, R.; Young, J.; Promontorio, R.; Dannheim, F. M.; Pattillo, C. C.; White, M. C. J. Am. Chem. Soc. 2019, 141, 9468. [71] Li, J.; Ren, Y.; Yue, C.; Fan, Y.; Qi, C.; Jiang, H. ACS Appl. Mater. Interfaces 2018, 10, 36047. [72] Li, J.; Zhang, Z.; Wu, L.; Zhang, W.; Chen, P.; Lin, Z.; Liu, G. Nature 2019, 574, 516. [73] Posevins, D.; Qiu, Y.; Bäckvall, J.-E. J. Am. Chem. Soc. 2018, 140, 3210. [74] Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Wu, W.; Liu, Y.; Lin, L.; Feng, X. Org. Lett. 2014, 16, 3938. [75] Bolm, C.; Schlingloff, G.; Weickhardt, K. Angew. Chem., Int. Ed. 1994, 33, 1848. [76] Lopp, M.; Paju, A.; Kanger, T.; Pehk, T. Tetrahedron Lett. 1996, 37, 7583. [77] Bianchini, G.; Cavarzan, A.; Scarso, A.; Strukul, G. Green Chem. 2009, 11, 1517. [78] Wu, W.; Cao, W.; Hu, L.; Su, Z.; Liu, X.; Feng, X. Chem. Sci. 2019, 10, 7003. [79] Wang, L.; Chen, M.; Zhang, P.; Li, W.; Zhang J. J. Am. Chem. Soc. 2018, 140, 3467. [80] Barman, S.; Patil, S.; Levy, C. J. Chem. Lett. 2012, 41, 974. [81] Zong, L.; Wang, C.; Putra Moeljadi, A. M.; Ye, X.; Ganguly, R.; Li, Y.; Hirao, H.; Tan, C.-H. Nat. Commun. 2016, 7, 13455. [82] (a) Dai, W.; Li, G.; Wang, L.; Chen, B.; Shang, S.; Lv, Y.; Gao, S. RSC Adv. 2014, 4, 46545. (b) Dai, W.; Shang, S.; Lv, Y.; Li, G.; Li, C.; Gao, S. ACS Catal. 2017, 7, 4890. [83] (a) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736. (b) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155. (c) Liang, Y.; Jiao, N. Acc. Chem. Res. 2017, 50, 1640. (d) Tang, X.; Wu, W.; Zeng, W.; Jiang, H. Acc. Chem. Res. 2018, 51, 1092. (e) Li, J.; Liao, J.; Ren, Y.; Liu, C.; Yue, C.; Lu, J.; Jiang, H. Angew. Chem., Int. Ed. 2019, 58, 17148. |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[3] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[4] | 张俊杰, 徐学涛. (S)-(–)-Xylopinine和(S)-(+)-Laudanosine的不对称合成[J]. 有机化学, 2023, 43(9): 3297-3303. |
[5] | 高晓阳, 翟锐锐, 陈训, 王烁今. 碳酸亚乙烯酯参与C—H键活化反应的研究进展[J]. 有机化学, 2023, 43(9): 3119-3134. |
[6] | 陈新强, 张敬. 伯醇的脱羟甲基反应的研究进展[J]. 有机化学, 2023, 43(8): 2711-2719. |
[7] | 户晓兢, 郭斐翔, 朱润青, 周柄棋, 张涛, 房立真. 对烷氧基酚的合成及其去芳构化后的合成应用[J]. 有机化学, 2023, 43(6): 2239-2244. |
[8] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[9] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[10] | 徐光利, 许静, 徐海东, 崔香, 舒兴中. 过渡金属催化烯烃和炔烃合成1,3-共轭二烯化合物研究进展[J]. 有机化学, 2023, 43(6): 1899-1933. |
[11] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[12] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[13] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
[14] | 庞明杨, 常宏宏, 冯璋, 张娟. 过渡金属催化吲哚的串联去芳构化反应研究进展[J]. 有机化学, 2023, 43(4): 1271-1291. |
[15] | 张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||