综述与进展

基于重氮酯的O—H插入反应研究进展

  • 王飞雨 ,
  • 张志朋 ,
  • 黄菲
展开
  • a 南京师范大学食品与制药工程学院 南京 210023
    b 南京工业大学药学院 南京 211816
    c 华南理工大学生物科学与工程学院 广州 510006
* Corresponding author. E-mail:
共同第一作者(These authors contributed to this work equally).

收稿日期: 2020-06-10

  修回日期: 2020-07-24

  网络出版日期: 2020-08-11

基金资助

国家自然科学基金(21901124); 江苏省高等学校自然科学基金(19KJB150032)

Research Progress of O—H Insertion Reaction Based on Diazo Ester

  • Feiyu Wang ,
  • Zhipeng Zhang ,
  • Fei Huang
Expand
  • a School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023
    b School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816
    c School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006

Received date: 2020-06-10

  Revised date: 2020-07-24

  Online published: 2020-08-11

Supported by

the National Natural Science Foundation of China(21901124); the Natural Science Foundation of the Jiangsu Higher Education Institutions(19KJB150032)

摘要

对近10年来均相过渡金属、非金属及多相催化剂催化重氮酯O—H插入反应的研究进展进行综述. 重点阐述了各类催化剂的结构、催化体系及其在药物研发和有机合成方面的应用. 底物重氮酯易于制备, 催化剂廉价易得, 反应过程中形成的卡宾中间体反应活性高, 因此O—H插入反应可在温和条件下发生, 高效构筑C—O键, 并获得可观的收率和对映选择性, 有利于手性药物的开发和合成. 最后, 对O—H插入反应及产物的绿色合成进行展望.

本文引用格式

王飞雨 , 张志朋 , 黄菲 . 基于重氮酯的O—H插入反应研究进展[J]. 有机化学, 2021 , 41(1) : 144 -157 . DOI: 10.6023/cjoc202006014

Abstract

The research progress of O—H insertion reaction of diazo esters catalyzed by homogeneous transition metal, nonmetal and heterogeneous catalysts in the past 10 years is reviewed. The structures and catalytic systems of various catalysts and their applications in drug development and organic synthesis are described. The substrate diazo ester is easy to prepare, the catalyst is cheap and easy to obtain, and the carbenoid intermediate formed in the reaction process has high reactivity. Therefore, the O—H insertion reaction can occur under mild conditions with efficient construction of C—O bond in considerable yield and enantioselectivity, which is conducive to the development and synthesis of chiral drugs. Finally, transition-metal- catalyzed O—H insertion and green synthesis are prospected.

参考文献

[1]
Mix K.A.; Aronoff M.R.; Raines R.T. ACS Chem. Biol. 2016, 11, 3233.
[2]
Doyle M.P.; McKervey M.A. Chem. Commun. 1997, 983.
[3]
(a) Doscher M.S.; Wilcox P.E. J. Biol. Chem. 1961, 236, 1328.
[3]
(b) Riehm J.P.; Scheraga H.A. Biochemistry 1965, 4, 772.
[3]
(c) Bayley H.; Knowles J.R. Methods Enzymol. 1977, 46, 69.
[3]
(d) Chowdhry V.; Westheimer F.H. Rev. Biochem. 1979, 48, 293.
[4]
(a) Nozaki H.; Moriuti S.; Takaya H.; Noyori R. Tetrahedron Lett. 1966, 7, 5239.
[4]
(b) Wolff L. Justus Liebigs Ann. Chem. 1902, 325, 129.
[4]
(c) Kirmse W. Eur. J. Org. Chem. 2002, 2193.
[4]
(d) Guo X.; Hu W.H. Acc. Chem. Res. 2013, 46, 2427.
[4]
(e) Qi C.R.; Yan D.H.; Xiong W.F.; Jiang H.F. Chin. J. Chem. 2018, 36, 399.
[5]
(a) Dzik W.I.; Xu X.; Zhang X.P.; Reek J.N.H.; Bruin B. J. Am. Chem. Soc. 2010, 132, 10891.
[5]
(b) Knight A.M.; Kan S.B.J.; Lewis R.D.; Brandenberg O.F.; Chen K.; Arnold F.H. ACS Cent. Sci. 2018, 4, 372.
[6]
Tyman J.H.P. Synthetic and Natural Phenols, Elsevier, Amsterdam , 1996.
[7]
(a) Lei Z.; Chen W.G.; Zhang M.; Napoli J.L. Biochemistry 2003, 42, 4190.
[7]
(b) Gregoire F.M.; Zhang F.; Clarke H.J.; Gustafson T.A.; Sears D.D.; Favelyukis S.; Lenhard J.; Rentzeperis D.; Clemens L.E.; Mu Y.; Lavan B.E. Mol. Endocrinol. 2009, 23, 975.
[7]
(c) Brodsky E.S.; Klyuev N.A.; Smirnova O.B.; Dovgilievitz A.V.; Grandberg I.I. Int. J. Environ. Anal. Chem. 1994, 56, 11.
[8]
Zhu S.F.; Cai Y.; Mao H.X.; Xie J.H.; Zhou Q.L. Nat. Chem. 2010, 2, 546.
[9]
Mbuvi H.M.; Klobukowski E.R.; Roberts G.M.; Woo L.K. J. Porphyrins Phthalocyanines 2010, 14, 284.
[10]
Zhu S.F.; Chen W.Q.; Zhang Q.Q.; Mao H.X.; Zhou Q.L. Synlett 2011, 919.
[11]
Pereira A.; Champouret Y.; Marti?n C.; Alvarez E.; Etienne M.; Belderrai?n T.R.; Perez. P. J. Chem.-Eur. J. 2015, 21, 9769.
[12]
Xie X.L.; Zhu S.F.; Guo J.X.; Cai Y.; Zhou Q.L. Angew. Chem., Int. Ed. 2014, 53, 2978.
[13]
Devine P.N.; Heid R.M.; Tschaen D.M. Tetrahedron 1997, 53, 6739.
[14]
Gao X.; Wu B.; Huang W.X.; Chen M.W.; Zhou Y.G. Angew. Chem., Int. Ed. 2015, 54, 11956.
[15]
Shen H.Q.; Xie H.P.; Sun L.; Zhou Y.G. Organometallics 2019, 38, 3902.
[16]
Liu Y.; Luo Z.J.; Zhang J.Z.H.; Xia F. J. Phys. Chem. A 2016, 120, 6485.
[17]
(a) Gorin D.J.; Toste F.D. Nature 2007, 446, 395.
[17]
(b) Fu?rstner A.; Davies P.W. Angew. Chem., Int. Ed. 2007, 46, 3410.
[17]
(c) Jimenez-Nu?nez E.; Echavarren A.M. Chem. Rev. 2008, 8, 3326.
[17]
(d) Rudolph M.; Hashmi A.S.K. Chem. Soc. Rev. 2012, 41, 2448.
[17]
Hashmi A.S.K.; Toste F.D. Modern Gold Catalyzed Synthesis, Wiley-VCH, Weinheim, 2012.
[17]
(f) Dorel R.; Echavarren A. M. Chem. Rev. 2015, 115, 9028.
[18]
(a) Zhou Y.B.; Trewyn B.G.; Angelici R.J.; Woo L.K. J. Am. Chem. Soc. 2009, 131, 11734.
[18]
(b) Qian D.Y.; Zhang J.L. Chem. Soc. Rev. 2015, 44, 677.
[18]
(c) Wang Y.H.; Muratore M.E.; Echavarren A.M. Chem.-Eur. J. 2015, 21, 7332.
[18]
(d) Xie J.; Pan C.D.; Abdukadera A.; Zhu C.J. Chem. Soc. Rev. 2014, 43, 5245.
[18]
(e) Wei F.; Song C.L.; Ma Y.D.; Zhou L.; Tung C.H.; Xu Z.H. Sci. Bull. 2015, 60, 1479.
[18]
(f) Sugimoto K.; Matsuya Y. Tetrahedron Lett. 2017, 58, 4420.
[18]
(g) Kawada Y.; Ohmura S.; Kobayashi M.; Nojo W.; Kondo M.; Matsuda Y.; Zhou J.; Inuki S.; Oishi S.; Wang C.; Saito T.; Uchiyama M.; Suzuki T.; Ohno H. Chem. Sci. 2018, 9, 8416.
[18]
(h) Hashmi A.S.K.; Rudolph M. Chem. Soc. Rev. 2012, 41, 2448.
[18]
(i) Gorin D.J.; Sherry B.D.; Toste F.D. Chem. Rev. 2008, 108, 3351.
[18]
(j) Arcadi A. Chem. Rev. 2008, 108, 3266.
[18]
(k) JimØnez-NfflC?ez E.; Echavarren A.M. Chem. Rev. 2008, 108, 3326.
[18]
(l) Hashmi A.S.K. Chem. Rev. 2007, 107, 3180.
[18]
(m) Zhang L.M.; Sun J.W.; Kozmin S.A. Adv. Synth. Catal. 2006, 348, 2271.
[19]
Xi Y.M.; Su Y.J.; Yu Z.Y.; Dong B.L.; McClain E.J.; Lan Y.; Shi X.D. Angew. Chem., Int. Ed. 2014, 53, 9817.
[20]
Zeineddine A.; Rekhroukh F.; Carrizo E.D.S.; Ladeira S.M.; Miqueu K.; Amgoune A.; Bourissou D. Angew. Chem., Int. Ed. 2018, 57, 1306.
[21]
Harada S.; Tanikawa K.; Homma H.; Sakai C.; Ito T.; Nemoto T. Chem.-Eur. J. 2019, 25, 12058.
[22]
Austeri M.; Rix D.; Zeghida W.; Lacour J. Org. Lett. 2011, 13, 1394.
[23]
Mercier A.; Yeo W.C.; Chou J.; Chaudhuri P.D.; Bernardinelli G.; Kundig E.P. Chem. Commun. 2009, 5227.
[24]
San H.H.; Wang S.J.; Jiang M.; Tang X.Y. Org. Lett. 2018, 20, 4672.
[25]
(a) Shibuya M.; Okamoto M.; Fujita S.; Abe M.; Yamamoto Y. ACS Catal. 2018, 8, 4189.
[25]
(b) Yu Z.; Li Y.; Shi J.; Ma B.; Liu L.; Zhang J. Angew. Chem., Int. Ed. 201 6, 55, 14807.
[26]
Couch E.D.; Auvil T.J.; Mattson A.E. Chem.-Eur. J. 2014, 20, 8283.
[27]
(a) Hart H.; Lin L.T.W. Mol. Cryst. Liq. Cryst. 1986, 137, 277.
[27]
(b) Etter M.C.; Panunto T.W. J. Am. Chem. Soc. 1988, 110, 5896.
[27]
(c) Etter M.C.; Urbanczyk-Lipkowsa Z.; Zia-Ebrahimi M.; Panunto T.W. J. Am. Chem. Soc. 1990, 112, 8415.
[27]
(d) Etter M.C. Acc. Chem.Res. 1990, 23, 120.
[27]
(e) Etter M.C. J. Phys. Chem. 1991, 95, 4601.
[27]
(f) Bhattacharyya S.; Bhattacherjee A.; Shirhatti P.R.; Wategaonkar S. J. Phys. Chem. A 2013, 117, 8238.
[27]
(g) Howard D.L.; Kjaergaard H.G. Phys. Chem. Chem. Phys. 2008, 10, 4113.
[27]
(h) Wierzejewska M.; Sadyka M. J. Mol. Struct. 2006, 786, 33.
[27]
(i) Ueyama N.; Nishikawa N.; Yamada Y.; Okamura T.-A.; Nakamura A. J. Am. Chem. Soc. 1996, 118, 12826.
[27]
(j) Sherry A.D.; Purcell K.F. J. Am. Chem. Soc. 1972, 94, 1848.
[28]
Barluenga J.; Tomas-Gamasa M.; Aznar F.; Valdes C. Angew. Chem., Int. Ed. 2010, 49, 4993.
[29]
Cui H.; Wang Y.X.; Wang Y.H.; Fan Y.Z.; Zhang L.; Su C.Y. CrysEngComm 2016, 18, 2203.
[30]
Wang Y.X.; Cui H.; Zhang L.; Su C.Y. ChemCatChem 2018, 10, 3901.
[31]
Anding B.J.; Ellern A.; Woo L.K. Organometallics 2014, 33, 2219.
[32]
Zhao X.; Zhang Y.; Wang J. Chem. Commun. 2012, 48, 10162.
[33]
Li M.L.; Chen M.Q.; Xu B.; Zhu S.F.; Zhou Q.L. Acta Chim. Sinica 2018, 76, 883.
[33]
( 李茂霖, 陈梦青, 徐彬, 朱守非, 周其林, 化学学报, 2018, 76, 883.).
[34]
Li Y.; Zhao Y.T.; Zhou T.; Chen M.Q.; Li Y.P.; Huang M.Y.; Xu Z.C.; Zhu S.F.; Zhou Q.L. J. Am. Chem. Soc. 2020, 142, 10557.
[35]
Gallo R.D.C.; Burtoloso A.C.B. Green Chem. 2018, 20, 4547.
[36]
Rudrawar S.; Besra R.C.; Chakraborti A.K. Synthesis 2006, 2767.
[36]
(b) Chakraborti A.K.; Gulhane R. Chem. Commun. 2003, 1896.
[36]
(c) Chakraborti A.K.; Chankeshwara S.V. Org. Biomol. Chem. 2006, 4, 2769.
[37]
Zhang Z.P.; Yu Y.; Huang F.; Yi X.Y.; Xu Y.; He Y.D.; Baelld J.B.; Huang H. Green Chem. 2020, 22, 1594.
[38]
Zhu C.H.; Xu G.Y.; Ding D.; Qiu L.; Sun J.T. Org. Lett. 2015, 17, 4244.
[39]
(a) Yang G.; Zu Y.G.; Zhou L.J. J. Phys. Org. Chem. 2008, 21, 34.
[39]
(b) Gomes J.R.B. J. Phys. Chem. A 2009, 113, 1628.
[39]
(c) Brines L.M.; Coggins M.K.; Poon P.C.Y.; Toledo S.; Kaminsky W.; Kirk M.L.; Kovacs J.A. J. Am. Chem. Soc. 2015, 137, 2253.
[39]
(d) Cao Y.H.; Shih W.C.; Ozerov O.V. Organometallics 2019, 38, 4076.
[40]
Dias M.P.; Burtoloso A.C.B. Org. Lett. 2016, 18, 3034.
文章导航

/