综述与进展

可见光促进烷基硼化合物转化研究进展

  • 史敦发 ,
  • 王露 ,
  • 夏春谷 ,
  • 刘超
展开
  • a 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000;
    b 中国科学院大学 北京 100049

收稿日期: 2020-06-18

  修回日期: 2020-08-29

  网络出版日期: 2020-09-09

基金资助

国家自然科学基金(Nos.21673261,91745110,21872156)、江苏省自然科学基金(Nos.BK20190002,BK20181194)和中国科学院青年创新促进会(No.2018458)资助项目.

Recent Advances in Visible-Light-Promoted Transformation of Alkyl Boron Compounds

  • Shi Dunfa ,
  • Wang Lu ,
  • Xia Chungu ,
  • Liu Chao
Expand
  • a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-06-18

  Revised date: 2020-08-29

  Online published: 2020-09-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21673261, 91745110, 21872156), the Natural Science Foundation of Jiangsu Province (Nos. BK20190002, BK20181194) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2018458).

摘要

有机硼化合物来源广泛,转化丰富多样,已经成为一种重要的有机合成中间体,被广泛地应用于医药、农药以及有机光电材料的合成中.烷基硼化合物作为一类重要的有机硼化合物,其合成以及转化研究具有重要意义.可见光近来在有机反应领域受到广泛关注.在可见光诱导下,四配位烷基硼化合物能发生单电子转移产生烷基自由基,从而进一步构建不同的化学键.综述了该研究领域的相关进展.

本文引用格式

史敦发 , 王露 , 夏春谷 , 刘超 . 可见光促进烷基硼化合物转化研究进展[J]. 有机化学, 2020 , 40(11) : 3605 -3619 . DOI: 10.6023/cjoc202006033

Abstract

Organoboron compounds are valuable synthetic intermediates and widely used in the synthesis of medicine, pesticide and organic optoelectronic materials due to their extensive resouce and highly transformable ability. Among various organoboron compounds, the synthesis and transformation of alkylboron compounds have attracted much attention. As a sustainable and green energy, visible light shows an important effect in organic systhesis. Tetracoordinated alkylboron compounds could occur single electron transfer (SET) process to generate alkyl radical for further transformations. Herein, the recent advances in the photoinduced transformation of alkyl boron compounds are summarized.

参考文献

[1] Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.
[2] Brown, H. C.; Tierney, P. A. J. Am. Chem. Soc. 1958, 80, 1552.
[3] (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933.
(b) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett. 1998, 39, 2937.
(c) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
[4] Zweifel, G.; Arzoumanian, H.; Whitney, C. C. J. Am. Chem. Soc. 1967, 89, 3652.
[5] Lennox, A. J.; Lloyd-Jones, G. C. Chem. Soc. Rev. 2014, 43, 412.
[6] (a) Leonori, D.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2015, 54, 1082.
(b) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
[7] (a) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China:Chem. 2018, 62, 24.
(b) Chen, D.; Liu, J.; Zhang, X.; Jiang, H.; Li, J. Chin. J. Org. Chem. 2019, 39, 3353(in Chinese). (陈丹, 刘剑沉, 张馨元, 蒋合众, 李加洪, 有机化学, 2019, 39, 3353.)
(c) Dai, X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046(in Chinese). (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
[8] Duret, G.; Quinlan, R.; Bisseret, P.; Blanchard, N. Chem. Sci. 2015, 6, 5366.
[9] Duan, K.; Yan, X.; Liu, Y.; Li, Z. Adv. Synth. Catal. 2018, 360, 2781.
[10] Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
[11] Dai, J. J.; Zhang, W. M.; Shu, Y. J.; Sun, Y. Y.; Xu, J.; Feng, Y. S.; Xu, H. J. Chem. Commun. 2016, 52, 6793.
[12] Heitz, D. R.; Rizwan, K.; Molander, G. A. J. Org. Chem. 2016, 81, 7308.
[13] Shi, D.; Xia, C.; Liu, C. CCS Chem. 2020, 2, 1718.
[14] Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[15] Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
[16] Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195.
[17] Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 9847.
[18] Alam, R.; Molander, G. A. J. Org. Chem. 2017, 82, 13728.
[19] Ryu, D.; Primer, D. N.; Tellis, J. C.; Molander, G. A. Chem.-Eur. J. 2016, 22, 120.
[20] Tellis, J. C.; Amani, J.; Molander, G. A. Org. Lett. 2016, 18, 2994.
[21] Matsui, J. K.; Molander, G. A. Org. Lett. 2017, 19, 436.
[22] Lima, F.; Kabeshov, M. A.; Tran, D. N.; Battilocchio, C.; Sedelmeier, J.; Sedelmeier, G.; Schenkel, B.; Ley, S. V. Angew. Chem., Int. Ed. 2016, 55, 14085.
[23] Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
[24] Proctor, R. S. J.; Phipps, R. J. Angew. Chem., Int.Ed. 2019, 58, 13666.
[25] Li, G. X.; Morales-Rivera, C. A.; Wang, Y. X.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
[26] Zhang, W. M.; Dai, J. J.; Xu, J.; Xu, H. J. J. Org. Chem. 2017, 82, 2059.
[27] Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512.
[28] Yan, H.; Hou, Z. W.; Xu, H. C. Angew. Chem., Int. Ed. 2019, 58, 4592.
[29] Amani, J.; Sodagar, E.; Molander, G. A. Org. Lett. 2016, 18, 732.
[30] Amani, J.; Molander, G. A. J. Org. Chem. 2017, 82, 1856.
[31] Amani, J.; Alam, R.; Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426.
[32] Amani, J.; Molander, G. A. Org. Lett. 2017, 19, 3612.
[33] Stache, E. E.; Rovis, T.; Doyle, A. G. Angew. Chem., Int. Ed. 2017, 56, 3679.
[34] Liu, W.; Liu, P.; Lv, L.; Li, C. J. Angew. Chem., Int. Ed. 2018, 57, 13499.
[35] Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881.
[36] Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. Chem. Commun. 2013, 49, 7249.
[37] Miyazawa, K.; Koike, T.; Akita, M. Adv. Synth. Catal. 2014, 356, 2749.
[38] Li, Y.; Miyazawa, K.; Koike, T.; Akita, M. Org. Chem. Front. 2015, 2, 319.
[39] Chinzei, T.; Miyazawa, K.; Yasu, Y.; Koike, T.; Akita, M. RSC Adv. 2015, 5, 21297.
[40] Iwata, Y.; Tanaka, Y.; Kubosaki, S.; Morita, T.; Yoshimi, Y. Chem. Commun. 2018, 54, 1257.
[41] Lang, S. B.; Wiles, R. J.; Kelly, C. B.; Molander, G. A. Angew. Chem., Int. Ed. 2017, 56, 15073.
[42] Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936.
[43] Tutkowski, B.; Meggers, E.; Wiest, O. J. Am. Chem. Soc. 2017, 139, 8062.
[44] Plasko, D. P.; Jordan, C. J.; Ciesa, B. E.; Merrill, M. A.; Hanna, J. M. Photochem. Photobiol. Sci. 2018, 17, 534.
[45] Yi, J.; Badir, S. O.; Alam, R.; Molander, G. A. Org. Lett. 2019, 21, 4853.
[46] Yu, X. Y.; Zhou, Q. Q.; Wang, P. Z.; Liao, C. M.; Chen, J. R.; Xiao, W. J. Org. Lett. 2018, 20, 421.
[47] Liu, M.; Huang, H.; Chen, Y. Chin. J. Chem. 2018, 36, 1209.
[48] Xie, S.; Li, D.; Huang, H.; Zhang, F.; Chen, Y. J. Am. Chem. Soc. 2019, 141, 16237.
[49] Li, X.; Han, M.-Y.; Wang, B.; Wang, L.; Wang, M. Org. Biomol. Chem. 2019, 17, 6612.
[50] Sim, J.; Campbell, M. W.; Molander, G. A. ACS Catal. 2019, 9, 1558.
[51] Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. J. Am. Chem. Soc. 2019, 141, 20069.
[52] Lima, F.; Sharma, U. K.; Grunenberg, L.; Saha, D.; Johannsen, S.; Sedelmeier, J.; Van der Eycken, E. V.; Ley, S. V. Angew. Chem., Int. Ed. 2017, 56, 15136.
[53] Lima, F.; Grunenberg, L.; Rahman, H. B. A.; Labes, R.; Sedelmeier, J.; Ley, S. V. Chem. Commun. 2018, 54, 5606.
[54] Chen, Y.; May, O.; Blakemore, D. C.; Ley, S. V. Org. Lett. 2019, 21, 6140.
[55] Ye, H.; Ye, Q.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2018, 59, 2046.
[56] Ye, H.; Zhao, H.; Ren, S.; Ye, H.; Cheng, D.; Li, X.; Xu, X. Tetrahedron Lett. 2019, 60, 1302.
[57] Shu, C.; Noble, A.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2019, 58, 3870.
[58] Kaiser, D.; Noble, A.; Fasano, V.; Aggarwal, V. K. J. Am. Chem. Soc. 2019, 141, 14104.
[59] Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
[60] Zou, Y. Q.; Chen, J. R.; Liu, X. P.; Lu, L. Q.; Davis, R. L.; Jorgensen, K. A.; Xiao, W. J. Angew. Chem., Int. Ed. 2012, 51, 784.
[61] Weng, W. Z.; Liang, H.; Zhang, B. Org. Lett. 2018, 20, 4979.
[62] Liu, T.; Li, Y.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 3605.
[63] Ye, S.; Li, X.; Xie, W.; Wu, J. Asian J. Org. Chem. 2019, 8, 893.
[64] Liu, T.; Ding, Y.; Fan, X.; Wu, J. Org. Chem. Front. 2018, 5, 3153.
[65] Gong, X.; Yang, M.; Liu, J.-B.; He, F.-S.; Wu, J. Org. Chem. Front. 2020, 7, 938.
[66] Clausen, F.; Kischkewitz, M.; Bergander, K.; Studer, A. Chem. Sci. 2019, 10, 6210.
文章导航

/