综述与进展

亚胺及其类似物的催化不对称炔基化反应新进展

  • 周淑蕊 ,
  • 温凯歌 ,
  • 曾兴平
展开
  • 1 江西师范大学化学化工学院 功能有机小分子教育部重点实验室和江西省绿色化学重点实验室 南昌 330022
* Corresponding author. E-mail:

收稿日期: 2020-07-16

  网络出版日期: 2020-09-09

基金资助

江西师范大学功能有机小分子教育部重点实验室开放基金(KLFS-KF-201603); 江西省教育厅(170223)

Recent Progress in Catalytic Asymmetric Alkynylation of Imines

  • Shurui Zhou ,
  • Kaige Wen ,
  • Xingping Zeng
Expand
  • 1 Laboratory of Small Fuctional Organic Molecule, Ministry of Education and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022

Received date: 2020-07-16

  Online published: 2020-09-09

Supported by

the Open Project Program of Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University(KLFS-KF-201603); the Foundation of Jiangxi Educational Committee(170223)

摘要

手性炔丙胺是天然产物和药物活性分子不对称全合成中常用的关键中间体, 亚胺及其类似物的不对称炔基化反应可以为该砌块提供高效高对映选择性的合成路径; 此外通过合理的底物和反应设计, 亚胺的不对称炔基化反应还能作为一系列串联反应的起点, 来合成多种结构新颖的含氮杂环化合物. 因此, 亚胺及其类似物的高效高对映选择性炔基化反应得到合成化学家们持续关注. 按照底物类型, 主要分为醛亚胺的不对称炔基化和酮亚胺的不对称炔基化两大部分, 介绍了亚胺及其类似物的不对称炔基化反应在过去十年中的研究进展. 对这些反应的机理、优势与不足之处以及该反应在合成中的应用进行简要讨论, 从而为拓展该反应在合成中的应用提供一些有益参考和借鉴.

本文引用格式

周淑蕊 , 温凯歌 , 曾兴平 . 亚胺及其类似物的催化不对称炔基化反应新进展[J]. 有机化学, 2021 , 41(2) : 471 -489 . DOI: 10.6023/cjoc202007043

Abstract

Chiral propargyl amines are key intermediates in the asymmetric total synthesis of natural products and bioactive compounds. The asymmetric alkynylation of imine and its analogues can provide a highly efficient and enantioselective synthetic route for these chiral building blocks. In addition, through rational substrate and reaction design, the asymmetric alkynylation of imines can be used as the starting point of a series of cascade reactions to synthesize a variety of novel nitrogen-heterocyclic compounds. Therefore, highly efficient and enantioselective alkynylation of imines and their analogues has attracted the continuous attention of synthetic chemists. According to the types of substrate, the research progress in asymmetric alkynylation of imines and their analogues over the past decade is introduced, which is divided into two parts: asymmetric alkynylation of aldimines and asymmetric alkynylation of ketoimines. The reaction mechanism and their advantages and disadvantages, together their synthetic applications will be briefly introduced, hoping to provide some useful inspiration for expanding the application of this reaction in synthesis.

参考文献

[1]
Lauder K.; Toscani A.; Scalacci N.; Castagnolo D. Chem. Rev. 2017, 117, 14091.
[2]
(a) Lu G.; Li Y.-M.; Li X.-S.; Chan A. S. C.Coord. Chem. Rev. 2005, 249, 1736.
[2]
(b) Blay G.; Monleón A.; Pedro J.R. Curr. Org. Chem. 2009, 13, 1498.
[2]
(c) Bian Q.; Zhong J.; Hou S.; Wang M. Chin. J. Org. Chem. 2010, 30, 1261. (in Chinese)
[2]
边庆花, 钟江春, 侯士聪, 王敏, 有机化学, 2010, 30, 1261.).
[2]
(d) Cheng M.; Li B.-G.Chin. Synth. Chem. 2012, 20, 1. (in Chinese)
[2]
成明, 李伯刚, 合成化学, 2012, 20, 1.).
[2]
(e) Bisai V.; Singh V.K. Tetrahedron Lett. 2016, 57, 4771.
[3]
Yan W.; Li P.; Feng J.; Wang D.; Zhu S.; Jiang X.; Wang R. Tetrahedron : Asymmetry 2010, 21, 2037.
[4]
Blay G.; Ceballos E.; Monleon A.; Pedro J.R. Tetrahedron 2012, 68, 2128.
[5]
(a) Liu T.-L.; Zhang H.-X.; Zheng Y.; Yao Q.; Ma J.-A. Chem. Commun. 2012, 48, 12234.
[5]
(b) Yang Z.-Y.; Liu T.-L.; Zheng Y.; Li S.; Ma J.-A. Eur. J. Org. Chem. 2015, 3905.
[6]
Blay G.; Brines A.; Monlen A.; Pedro J.R. Chem.-Eur. J. 2012, 18, 2440.
[7]
Xie Z.; Liu X.; Liu L. Org. Lett. 2016, 18, 2982.
[8]
Luzung M.R.; Dixon D.D.; Ortiz A.; Guerrero C.A.; Ayers S.; Ho J.; Schmidt M.A.; Strotman N.A.; Eastgate M.D. J. Org. Chem. 2017, 82, 10715.
[9]
(a) Campbell M.J.; Toste F.D. Chem. Sci. 2011, 2, 1369.
[9]
(b) Ranjan A.; Mandal A.; Yerande S.G.; Dethe D.H. Chem. Commun. 2015, 51, 14215.
[10]
Hashimoto T.; Omote M.; Maruoka K. Angew. Chem., Int. Ed. 2011, 50, 8952.
[11]
Pappoppula M.; Cardoso F. S. P.; Garrett B.O.; Aaron A. Angew. Chem., Int. Ed. 2015, 54, 15202.
[12]
Kou X.; Zhao Q.; Guan Z.-H. Org. Chem. Front. 2020, 7, 838.
[13]
Ren Y.-Y.; Wang Y.-Q.; Liu S. J. Org. Chem. 2014, 79, 11759.
[14]
Munck L.D.; Monleón A.; Vila C.; Mu?oz M.C.; Pedro J.R. Org. Biomol. Chem. 2015, 13, 7393.
[15]
Munck L.D.; Monleón A.; Vila C.; Pedro J.R. Adv. Synth. Catal. 2017, 359, 1582.
[16]
Yu J.; Li Z.; Jia K.; Jiang Z.; Liu M.; Su W. Tetrahedron Lett. 2013, 54, 2006.
[17]
Sun S.; Li C.; Floreancig P.E.; Lou H.; Liu L. Org. Lett. 2015, 17, 1684.
[18]
Sun S.; Liu L. Synthesis 2016, 48, 2627.
[19]
Perepichka I.; Kundu S.; Hearne Z.; Li C.-J. Org. Biomol. Chem. 2015, 13, 447.
[20]
Huang T.; Liu X.; Lang J.; Xu J.; Lin L.; Feng X. ACS Catal. 2017, 7, 5654.
[21]
(a) Wei C.; Li C.-J. J. Am. Chem. Soc. 2002, 124, 5638.
[21]
Wei C.; Mague J.T.; Li C.-J. Proc. Natl. Acad. Sci. U.S. A. 2004, 101, 5749.
[21]
Selected reviews:.
[21]
(c) Peshkov V.A.; Pereshivko O.P.; Van der Eycken, E.V.Chem. Soc. Rev. 2012, 41, 3790.
[21]
(d) Rokade B.V.; Barker J.; Guiry P.J. Chem. Soc. Rev. 2019, 48, 4766.
[21]
(e) Mo J.-N.; Su J.; Zhao J. Molecules 2019, 24, 1216.
[21]
(f) Jesin I.; Nandi G.C. Eur. J. Org. Chem. 2019, 2704.
[22]
Bisai V.; Suneja A.; Singh V.K. Angew. Chem., Int. Ed. 2014, 53, 10737.
[23]
Das B.G.; Shah S.; Singh V.K. Org. Lett. 2019, 21, 4981.
[24]
Dhanasekaran S.; Kannaujiya V.K.; Biswas R.G.; Singh V.K. J. Org. Chem. 2019, 84, 3275.
[25]
Li Z.; Jiang Z.; Su W. Green Chem. 2015, 17, 2330.
[26]
Gao X.-T.; Gan C.-C.; Liu S.-Y.; Zhou F.; Wu H.-H.; Zhou J. ACS Catal. 2017, 7, 8588.
[27]
(a) Nakamura S.; Hyodo K.; Nakamura Y.; Shibata N.; Toru T. Adv. Synth. Catal. 2008, 350, 1443.
[27]
(b) Liu H.; Du D.-M. Adv. Synth. Catal. 2009, 351, 489.
[28]
Nakamura S.; Ohara M.; Nakamura Y.; Shibata N.; Toru T. Chem.-Eur. J. 2010, 16, 2360.
[29]
Ohara M.; Hara Y.; Ohnuki T.; Nakamura S. Chem.-Eur. J. 2014, 20, 8848.
[30]
Kn?pfel T.E.; Aschwanden P.; Ichikawa T.; Watanabe T.; Carreira E.M. Angew. Chem., Int. Ed. 2004, 43, 5971.
[31]
Huang X.; Ma S. Acc. Chem. Res. 2019, 52, 1301.
[32]
(a) Ye J.; Li S.; Chen B.; Fan W.; Kuang J.; Liu J.; Liu Y.; Miao B.; Wan B.; Wang Y.; Xie X.; Yu Q.; Yuan W.; Ma S. Org. Lett. 2012, 14, 1346.
[32]
(b) Liu Q.; Cao T.; Han Y.; Jiang X.; Tang Y.; Zhai Y.; Ma S. Synlett 2019, 30, 477.
[33]
Fan W.; Ma S. Chem. Commun. 2013, 49, 10175.
[34]
Fan W.; Yuan W.; Ma S. Nat. Commun. 2014, 5, 1.
[35]
(a) Lin W.; Cao T.; Fan W.; Han Y.; Kuang J.; Luo H.; Miao B.; Tang X.; Yu Q.; Yuan W.; Zhang J.; Zhu C.; Ma S. Angew. Chem., Int. Ed. 2014, 53, 277.
[35]
(b) Lin W.; Ma S. Org. Chem. Front. 2014, 1, 338.
[35]
(c) Lin W.; Ma S. Org. Chem. Front. 2017, 4, 958.
[36]
Zhou S.; Tong R. Org. Lett. 2017, 19, 1594.
[37]
(a) Cardoso F. S. P.; Abboud K.A.; Aponick A. J. Am. Chem. Soc. 2013, 135, 14548.
[37]
(b) Paioti P. H. S.; Abboud K.A.; Aponick A. J. Am. Chem. Soc. 2016, 138, 2150.
[38]
(a) Paioti P. H. S.; Abboud K.A.; Aponick A. ACS Catal. 2017, 7, 2133.
[38]
(b) Rokade B.V.; Guiry P.J. ACS Catal. 2017, 7, 2334.
[38]
(c) Rokade B.V.; Guiry P.J. J. Org. Chem. 2019, 84, 5763.
[39]
(a) Min C.; Mittal N.; Sun D.X.; Seidel D. Angew. Chem., Int. Ed. 2013, 52, 14084.
[39]
(b) Mittal N.; Sun D.X.; Seidel D. Org. Lett. 2014, 16, 1012.
[40]
Zhao C.; Seidel D. J. Am. Chem. Soc. 2015, 137, 4650.
[41]
Huang G.; Yang J.; Zhang X. Chem. Commun. 2011, 47, 5587.
[42]
Huang G.; Yin Z.; Zhang X. Chem.-Eur. J. 2013, 19, 11992.
[43]
Morisaki K.; Sawa M.; Nomaguchi J.-Y.; Morimoto H.; Takeuchi Y.; Mashima K.; Ohshima T. Chem.-Eur. J. 2013, 19, 8417.
[44]
Morisaki K.; Sawa M.; Yonesaki R.; Morimoto H.; Mashima K.; Ohshima T. J. Am. Chem. Soc. 2016, 138, 6194.
[45]
Yin L.; Otsuka Y.; Takada H.; Mouri S.; Yazaki R.; Kumagai N.; Shibasaki M. Org. Lett. 2013, 698.
[46]
Takada H.; Kumagai N.; Shibasaki M. Org. Lett. 2015, 17, 4762.
[47]
Chen Q.; Xie L.; Li Z.; Tang Y.; Zhao P.; Lin L.; Feng X.; Liu X. Chem. Commun. 2018, 54, 678.
[48]
Dasgupta S.; Liu J.; Shoffler C.A.; Yap G. P. A.; Watson M.P. Org. Lett. 2016, 18, 6006.
[49]
Zhang F.-G.; Ma H.; Nie J.; Zheng Y.; Gao Q.; Ma J.-A. Adv. Synth. Catal. 2012, 354, 1422.
[50]
Zhang Y.; Nie J.; Zhang F.-G.; Ma J.-A. J. Fluorine Chem. 2018, 208, 1.
[51]
Ling Z.; Singh S.; Xie F.; Wu L.; Zhang W. Chem. Commun. 2017, 53, 5364.
[52]
Liu R.-R.; Zhu L.; Hu J.-P.; Lu C.-J.; Gao J.-R.; Lan Y.; Jia Y.-X. Chem. Commun. 2017, 53, 5890.
文章导航

/