综述与进展

硼酸酯键在药物传递体系中的应用

  • 王李娟 ,
  • 盛显良 ,
  • 王杰 ,
  • 张玉辉
展开
  • a 内蒙古农业大学理学院 呼和浩特 010018
    b 内蒙古农业大学材料科学与艺术设计学院 呼和浩特 010018
* Corresponding author. E-mail:

收稿日期: 2020-06-28

  修回日期: 2020-08-04

  网络出版日期: 2020-09-16

基金资助

内蒙古自治区高等学校“青年科技英才支持计划”(NJYT-19-B26); 内蒙古自治区自然科学基金博士基金(2017BS0206); 及内蒙古农业大学高层次人才引进科研启动(NDGCC2016-21)

Application of Boronate Bond in Drug Delivery System

  • Lijuan Wang ,
  • Xianliang Sheng ,
  • Jie Wang ,
  • Yuhui Zhang
Expand
  • a College of Science, Inner Mongolia Agricultural University, Hohhot 010018
    a College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018

Received date: 2020-06-28

  Revised date: 2020-08-04

  Online published: 2020-09-16

Supported by

the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-19-B26); the Doctor Fund of Inner Mongolia Autonomous Region Natural Science Fund(2017BS0206); the Program of Higher-level Talents Introduction and Scientific Research Start of Inner Mongolia Agricultural University(NDGCC2016-21)

摘要

刺激响应性药物载体由于其优异的控释性能, 在生物医药领域引发了广泛的关注并得到了极为快速的发展. 硼酸酯键因构筑条件简单、生物相容性好以及能够响应生物体内pH、葡萄糖、三磷酸腺苷(ATP)等多种微环境变化的优势被广泛用于刺激响应性药物载体的构筑. 基于硼酸酯键的药物载体类型有药物-聚合物偶联、聚合物胶束、线性-超支化聚合物和介孔二氧化硅等, 它们既能负载抗癌药物, 又能递送胰岛素和基因. 药物通过共价或非共价作用负载到载体上, 并利用硼酸酯键在不同环境下的形成与断裂实现药物的可控释放. 从药物类型、载体类型、药物与载体的结合方式以及硼酸酯键的断裂机制四个方面综述了硼酸酯键在药物传递体系中的应用, 并对其当前面临的主要挑战和未来的发展趋势进行了总结和展望.

本文引用格式

王李娟 , 盛显良 , 王杰 , 张玉辉 . 硼酸酯键在药物传递体系中的应用[J]. 有机化学, 2021 , 41(2) : 567 -581 . DOI: 10.6023/cjoc202006060

Abstract

Because of its excellent controlled release properties, stimulus-responsive drug carriers have attracted extensive attention in the field of biomedicine and have achieved extremely rapid development. Boronate bonds have been widely used as a stimulus-responsive site in the construction of drug carriers because of its simple construction conditions, good biocompatibility, and fast responsiveness to various micro-environmental changes such as pH, glucose and 5'-adenosine triphosphate (ATP) concentration in vivo. The types of drug carriers based on boronate bonds include drug-polymer conjugate, polymer micelles, linear-hyperbranched polymers and mesoporous silica, which could load anticancer drugs and deliver insulin and genes. Besides, drugs could be integrated into carrier by covalent bonding, physical encapsulation, and electrostatic interactions, which could be released at specific sites via endogenous stimuli. The application of boronate bond in drug delivery system is reviewed from four aspects: drug types, carrier types, combination mode of drug and carrier as well as breaking mechanism of boronate bond. The main challenges and future advances in this field are also detailed.

参考文献

[1]
Sun Q.H.; Sun X.R.; Ma X.P.; Zhou Z.X.; Jin E.L.; Zhang B.; Shen Y.Q.; Van Kirk E.A.; Murdoch W.J.; Lott J.R.; Lodge T.P.; Radosz M.; Zhao Y.L. Adv. Mater. 2014, 26, 7615.
[2]
Peer D.; Karp J.M.; Hong S.; FaroKHzad O.C.; Margalit R.; Langer R. Nat. Nanotechnol. 2007, 2, 751.
[3]
Ma X.H.; Wang J.Y.; Guo J.J.; Wang Z.Y.; Zang S.Q. Chin. J. Chem. 2019, 37, 1120.
[4]
Meng F.D.; Sun J.; Li Z.B. Chin. J. Chem. 2019, 37, 1137.
[5]
Guan X.L.; Wang L.; Li Z.F.; Liu M.N.; Wang K.L.; Lin B.; Yang X.Q.; Lai S.J.; Lei Z.Q. Acta Chim. Sinica 2019, 77, 1036. (in Chinese)
[5]
关晓琳, 王林, 李志飞, 刘美娜, 王凯龙, 林斌, 杨学琴, 来守军, 雷自强, 化学学报, 2019, 77, 1036.).
[6]
Rowan S.J.; Cantrill S.J.; Cousins G. R. L.; Sanders J. K. M.; Stoddart J.F. Angew. Chem., Int. Ed. 2002, 41, 898.
[7]
Zhang Y.L.; Yang B.; Xu L.X.; Zhang X.Y.; Tao L.; Wei Y. Acta Chim. Sinica 2013, 71, 48. (in Chinese)
[7]
张亚玲, 杨斌, 许亮鑫, 张小勇, 陶磊, 危岩, 化学学报, 2013, 71, 48.).
[8]
Tang Q.Q.; Yuan L.; Yang D.; Hu J.H. Acta Chim. Sinica 2010, 68, 1925. (in Chinese)
[8]
唐倩倩, 袁丽, 杨东, 胡建华, 化学学报, 2010, 68, 1925.).
[9]
Xu H.P.; Cao W.; Zhang X. Acc. Chem. Res. 2013, 46, 1647.
[10]
Brooks W. L. A.; Sumerlin B.S. Chem. Rev. 2016, 116, 1375.
[11]
Vancoillie G.; Hoogenboom R. Polym. Chem. 2016, 7, 5484.
[12]
Lorand J.P.; Edwards J.O. J. Org. Chem. 1959, 24, 769.
[13]
Bosch L.I.; Fyles T.M.; James T.D. Tetrahedron 2004, 60, 11175.
[14]
Ma R.J.; Shi L.Q. Polym. Chem. 2014, 5, 1503.
[15]
Djanashvili K.; Frullano L.; Peters J.A. Chem.-Eur. J. 2005, 11, 4010.
[16]
Dick L.R.; Fleming P.E. Drug Discovery Today 2010, 15, 243.
[17]
Kupperman E.; Lee E.C.; Cao Y.Y.; Bannerman B.; Fitzgerald M.; Berger A.; Yu J.; Yang Y.; Hales P.; Bruzzese F.; Liu J.; Blank J.; Garcia K.; Tsu C.; Dick L.; Fleming P.; Yu L.; Manfredi M.; Rolfe M.; Bolen J. Cancer Res. 2010, 70, 1970.
[18]
Wang C.; Hou X.B.; Fang H. Acta Pharm. Sin. 2019, 54, 1940. (in Chinese)
[18]
王川, 侯旭奔, 方浩, 药学学报, 2019, 54, 1940.).
[19]
Zhu S.-S.; Chen X.; Yan Q.Y.; Lin Z. Chin. Mod. Doctor 2019, 57, 164. (in Chinese)
[19]
朱珊珊, 陈鑫, 颜巧妍, 林忠, 中国现代医生, 2019, 57, 164.).
[20]
Escalante J.; McQuade R.M.; Stojanovska V.; Nurgali K. Maturitas 2017, 105, 23.
[21]
Zhu J.Y.; Lei Q.; Yang B.; Jia H.Z.; Qiu W.X.; Wang X.L.; Zeng X.; Zhuo R.X.; Feng J.; Zhang X.Z. Biomaterials 2015, 52, 281.
[22]
Hao Y.W.; Zheng C.X.; Wang L.; Hu Y.J.; Guo H.C.; Song Q.L.; Zhang H L.; Zhang Z.Z.; Zhang Y. J. Mater. Chem. B 2017, 5, 2133.
[23]
Zhu X.Y.; Wu C.H.; Qiu S.H.; Yuan X.L.; Li L. Nutr. Metab. 2017, 14, 60.
[24]
Xu Y.; Wang L.M.; He J.; Bi Y.F.; Li M.; Wang T.G.; Wang L.H.; Jiang Y.; Dai M.; Lu J.L.; Xu M.; Li Y.C.; Hu N.; Li J.H.; Mi S.Q.; Chen C.S.; Li G.W.; Mu Y.M.; Zhao J.J.; Kong L.Z.; Chen J.L.; Lai S.H.; Wang W.Q.; Zhao W.H.; Ning G. J. Am. Med. Assoc. 2013, 310, 948.
[25]
Shah R.B.; Patel M.; Maahs D.M.; Shah V.N. Int. J. Pharm. Invest. 2016, 6, 1.
[26]
Wang Y.X.; Chai Z.H.; Ma L.Y.; Shi C.S.; Shen T.F.; Song J. RSC Adv. 2014, 4, 53877.
[27]
Zhang Y.H.; Zhang Y.M.; Zhao Q.H.; Liu Y. Sci. Rep. 2016, 6, 22654.
[28]
Gao L.; Wang T.T.; Jia K.K.; Xuan Wu X.; Yao C.H.; Shao W.; Zhang D.M.; Hu X.Y.; Wang L.Y. Chem.-Eur. J. 2017, 23, 6605.
[29]
Zuo M.Z.; Qian W.R.; Xu Z.Q.; Shao W.; Hu X.Y.; Zhang D.M.; Jiang J.L.; Sun X.Q.; Wang L.Y. Small 2018, 14, 1801942.
[30]
Wang J.Q.; Yu J.; Zhang Y.Q.; Zhang X.D.; Kahkoska A.R.; Chen G.J.; Wang Z.J.; Sun W.J.; Cai L.L.; Chen Z.W.; Qian C.G.; Shen Q.D.; Khademhosseini A.; Buse J.B.; Gu Z. Sci. Adv. 2019, 5, eaaw4357.
[31]
Yu J.C.; Wang J.Q.; Zhang Y.Q.; Chen G.J.; Mao W.W.; Ye Y.Q.; Kahkoska A.R.; Buse J.B.; Langer R.; Gu Z. Nat. Biomed. Eng. 2020, 4, 499.
[32]
Akhtar N.; Akram M.; Asif H.M.; Usmanghani K.; Shah S. M. A.; Rao S.A.; Uzair M.; Shaheen G.; Ahmad K. J. Med. Plants Res. 2011, 5, 1812.
[33]
Miyazawa H.; Hirai K.; Ookawara S.; Ishibashi K.; Morishita Y. Nano Rev. Exp. 2017, 8, 1331099.
[34]
Yang B.; Jia H.Z.; Wang X.L.; Chen S.; Zhang X.Z.; Zhuo R.X.; Feng J. Adv. Healthcare Mater. 2014, 3, 596.
[35]
Jeon J.H.; Park J.H.; Kim T. J. Ind. Eng. Chem. 2019, 75, 148.
[36]
Liu X.; Xiang J.J.; Zhu D.C.; Jiang L.M.; Zhou Z.X.; Tang J.B.; Liu X.R.; Huang Y.Z.; Shen Y.Q. Adv. Mater. 2016, 28, 1743.
[37]
Elvira C.; Gallardo A.; San Roman J.; Cifuentes A. Molecules 2005, 10, 114.
[38]
Tan J. P. K.; Voo Z.X.; Lim S.; Venkataraman S.; Ng K.M.; Gao S.J.; Hedrick J.L.; Yang Y.Y. Nanomedicine 2019, 17, 236.
[39]
Kim J.; Lee J.; Lee Y.M.; Pramanick S.; Im S.; Kim W.J. J. Controlled Release 2017, 259, 203.
[40]
Zhang Y.H.; Zhang Y.M.; Yu J.; Wang J.; Liu Y. Chem. Commun. 2019, 55, 1164.
[41]
Chai Y.; Xu K.; Chang H.B.; Zhang P.Y. Chem. Res. 2018, 29, 522. (in Chinese)
[41]
柴云, 许凯, 常海波, 张普玉, 化学研究, 2018, 29, 522.).
[42]
Li Y.P.; Xiao W.W.; Xiao K.; Berti L.; Luo J.T.; Tseng H.P.; Fung G.; Lam K.S. Angew. Chem., Int. Ed. 2012, 51, 2864.
[43]
Han Y.; Yin W.; Li J.J.; Zhao H.; Zha Z.S.; Ke W.D.; Wang Y.H.; He C.X.; Ge Z.S. J. Controlled Release 2018, 273, 30.
[44]
Mehta P.; Kadam S.; Pawar A.; Bothiraja C. New J. Chem. 2019, 43, 8396.
[45]
Jiang W.F.; Zhou Y.F.; Yan D.Y. Chem. Soc. Rev. 2015, 44, 3874.
[46]
Jia H.Z.; Zhu J.Y.; Wang X.L.; Cheng H.; Chen G.; Zhao Y.F.; Zeng X.; Feng J.; Zhang X.Z.; Zhuo R.X. Biomaterials 2014, 35, 5240.
[47]
Long Z.; Liu M.Y.; Mao L.C.; Zeng G.J.; Wan Q.; Xu D.Z.; Deng F.J.; Huang H.Y.; Zhang X.Y.; Wei Y. Colloids Surf., B 2017, 150, 114.
[48]
Liu C.Y.; Shao N.M.; Wang Y.T.; Cheng Y.Y. Adv. Healthcare Mater. 2016, 5, 584.
[49]
Hu Y.C.; Wang Y.Z.; Wang S.L. J. Shenyang Pharm. Univ.. 2010, 27, 961. (in Chinese)
[49]
胡延臣, 王彦竹, 王思玲, 沈阳药科大学学报, 2010, 27, 961.).
[50]
Regi M.V.; Ramila A.; del Real R.P.; Pariente J.P. Chem. Mater. 2001, 13, 308.
[51]
Wang H.G.; Liu X.H. Chin. J. Hosp. Pharm. 2019, 39, 1099. (in Chinese)
[51]
王海刚, 刘向红, 中国医院药学杂志, 2019, 39, 1099.).
[52]
Hu C.L.; Yu L.X.; Zheng Z.; Wang J.; Liu Y.; Jiang Y.F.; Tong G.Z.; Zhou Y.J.; Wang X.L. RSC Adv. 2015, 5, 85436.
[53]
Tan L.; Yang M.Y.; Wu H.U.; Tang Z.W.; Xiao J.Y.; Liu C.J.; Zhuo R.X. ACS Appl. Mater. Interfaces 2015, 7, 6310.
[54]
Qiu X.L.; Li Q.L.; Zhou Y.; Jin X.Y.; Qi A.D.; Yang Y.W. Chem. Commun. 2015, 20, 4237.
[55]
Xu Y.H.; Shi W.; Li H.Y.; Li X.H.; Ma H.M. ChemMedChem 2019, 14, 1079.
[56]
Aguirre-Chagala Y.E.; Santos J.L.; Aguilar-Castillo B.A.; Herrera-Alonso M. ACS Macro Lett. 2014, 3, 353.
[57]
Zhao Z.K.; Zhang Y.; Tian C.L.; Yin T.J.; Zhang C. Biomater. Sci. 2018, 6, 2605.
[58]
Bai J.A.; Tian Y.; Liu F.Z.; Li X.L.; Shao Y.; Lu X.T.; Wang J.T.; Zhu G.Q.; Xue B.Y.; Liu M.; Hu P.; He N.; Tang Q.Y. ACS Appl. Mater. Interfaces 2019, 11, 18111.
[59]
Chen Y.J.; Han H.J.; Tong H.X.; Chen T.T.; Wang H.B.; Ji J.; Jin Q. ACS Appl. Mater. Interfaces 2016, 8, 21185.
[60]
Fan B.; Kang L.; Chen L.P.; Sun P.; Jin M.J.; Wang Q.M.; Bea Y.H.; Huang W.; Gao Z.G. Theranostics 2017, 7, 357.
[61]
Kim J.; Lee Y.M.; Kim H.; Park D.; Kim J.; Kim W.J. Biomaterials 2016, 75, 102.
[62]
Wang C.Y.; Qi P.L.; Lu Y.; Liu L.; Zhang Y.N.; Sheng Q.L; Wang T.S.; Zhang M.Y.; Wang R.; Song S.Y. Drug Delivery 2020, 27, 344.
[63]
Zhang P; Xu Q.N.; Li X.F.; Wang Y.X. Mater. Sci. Eng., C 2020, 108, 110396.
[64]
Chen W.Z.; Zhen X.; Wu W.; Jiang X.Q. Sci. China : Chem. 2020, 63, 648.
[65]
Mansour O.; El Joukhar I.; Belbekhouche S. React. Funct. Polym. 2019, 145, 104377.
[66]
Szatrowski T.P.; Nathan C.F. Cancer Res. 1991, 51, 794.
[67]
Li C.T.; Pan R.J.; Li P.Y.; Guan Q.H.; Ao J.P.; Wang K.; Xu L.; Liang X.F.; Jin X.; Zhang C.; Zhu X.Y. Anal. Chem. 2017, 89, 5967.
[68]
Zhang Q.X.; Zhang F.Z.; Chen Y.; Dou Y.; Tao H.; Zhang D.L.; Wang R.B.; Li X.H.; Zhang J.X. Chem. Mater. 2017, 29, 8221.
[69]
Antunes F.; Cadenas E. Free Radicals Biol. Med. 2001, 30, 1008.
[70]
Ye M.Z.; Han Y.X.; Tang J.B.; Piao Y.; Liu X.R.; Zhou Z.X.; Gao J.Q.; Rao J.H.; Shen Y.Q. Adv. Mater. 2017, 29, 1702342.
[71]
Yin W.; Li J.J.; Ke W.D.; Zha Z.S.; Ge Z.S. ACS Appl. Mater. Interfaces 2017, 9, 29538.
[72]
Zhou J.; Yu G.C.; Yang J.; Shi B.B.; Ye B.Y.; Wang M.B.; Huang F.H.; Stang P.J. Chem. Mater. 2020, 32, 4564.
[73]
Qie S.Y.; Hao Y.; Liu Z.J.; Wang J.; Xi J.N. Acta Chim. Sinica 2020, 78, 232. (in Chinese)
[73]
郄淑燕, 郝莹, 刘宗建, 王锦, 席家宁, 化学学报, 2020, 78, 232.).
[74]
Zhou J.Y.; Tang Q.J.; Zhong J.X.; Lei Z.T.; Luo H.P.; Tong Z.Z.; Jang G.H.; Liu X.D. J. Mater. Sci. 2018, 53, 14063.
文章导航

/