综述与进展

无过渡金属催化条件下合成3,3'-二吲哚甲烷衍生物的最新进展

  • 张振国 ,
  • 刘笑笑 ,
  • 宗鑫龙 ,
  • 苑亚林 ,
  • 刘双磊 ,
  • 张婷 ,
  • 吴子尚 ,
  • 杨静莹 ,
  • 贾振华
展开
  • a 南京工业大学化学与分子工程学院 先进化学制造研究院 南京 211816
* Corresponding authors. E-mail: ;

收稿日期: 2020-08-05

  修回日期: 2020-10-13

  网络出版日期: 2020-10-22

基金资助

南京工业大学启动基金(38037037); 江苏省协同联合创新中心和江苏省研究生科研与实践创新计划(KYCX20_1031)

Recent Advance on the Synthesis of 3,3'-Bisindolylmethane Derivatives under Transition-Metal-Free Catalytic Conditions

  • Zhenguo Zhang ,
  • Xiaoxiao Liu ,
  • Xinlong Zong ,
  • Yalin Yuan ,
  • Shuanglei Liu ,
  • Ting Zhang ,
  • Zishang Wu ,
  • Jingying Yang ,
  • Zhenhua Jia
Expand
  • 1 Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816

Received date: 2020-08-05

  Revised date: 2020-10-13

  Online published: 2020-10-22

Supported by

the Start-up Grant of Nanjing Tech University(38037037); the Synergetic Innovation Center for Advanced Materials Fellowship and Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX20_1031)

摘要

3,3'-二吲哚甲烷类化合物是一类重要的吲哚生物碱, 其结构单元广泛存在于天然产物、功能性材料以及合成药物分子中. 因其具有多样的生物活性和功能, 如抗氧化、抗炎症、抗血管生成、抗菌以及抗癌活性等, 构筑3,3'-二吲哚甲烷类杂环化合物备受关注. 传统的合成方法, 尤其是对称结构的3,3'-二吲哚甲烷类化合物的合成主要在化学量的Brønsted酸或Lewis酸存在下, 吲哚衍生物与羰基化合物经傅-克反应缩合得到. 而过渡金属的使用可引起化合物中金属残留以及环境污染. 总结和探讨了从2010年至今3,3'-二吲哚甲烷类化合物的合成方法, 尤其是对无过渡金属参与条件下, 对称结构的3,3'-二吲哚甲烷类化合物以及非对称结构3,3'-二吲哚甲烷类化合物制备的最新进展以及相应的反应机理, 旨在为该类化合物生物活性测试提供重要的理论依据和技术支持.

本文引用格式

张振国 , 刘笑笑 , 宗鑫龙 , 苑亚林 , 刘双磊 , 张婷 , 吴子尚 , 杨静莹 , 贾振华 . 无过渡金属催化条件下合成3,3'-二吲哚甲烷衍生物的最新进展[J]. 有机化学, 2021 , 41(1) : 52 -64 . DOI: 10.6023/cjoc202008003

Abstract

3,3'-Bisindolylmethanes (3,3'-BIMs) compounds are important indole alkyloads and their units are widely found in various natural products, functional materials and synthetic pharmaceutical compounds. Due to diverse biological activities and functionalities, for instance, antioxidant, anti-inflammatory, antiangiogenic, anti-bacterial and anti-cancer etc., the construction of 3,3'-BIMs is raised considerable concerns. Conventional methods especially focused on symmetrical 3,3'-BIMs were the condensition of indoles with carbonyl compounds via Friedel-Crafts pathway in the presence of Brønsted acids or Lewis acids. However, the utilization of transtion metals led the residue into the products and environmental contamination. The recent advance on the synthesis of 3,3'-BIMs since 2010, mainly concerned on the approaches and corresponding me- chanism to prepare symmetrical and unsymmetrical 3,3'-BIMs under transition-metal-free conditions is summarized and dis- cussed, aiming to provide important theoretical evidence and techinical support for further biological evaluations on desired compounds.

参考文献

[1]
Katritzky A.R.; Ramsden C.A.; Scriven E.F.V.; Taylor R.J.K. Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford , 2008.
[2]
Irie T.; Kubushirs K.; Suzuki K.; Tsukazaki K.; Umezawa K.; Nozawa S. Anticancer Res. 1999, 31, 3061.
[3]
Hong C.; Firestone G.L.; Bjeldanes L.F. Biochem. Pharmacol. 2002, 63, 1085.
[4]
Porszasz J.; Gibiszer-Porszasz K.; Foldeak S.; Matkovics B. Experientia 1965, 21, 93.
[5]
(a) Kuethe J.T. Chimia 2006, 60, 543.
[5]
(b) Foldeak S.; Czombas J.; Matkovis B. Acta Phys. Chem. 196 5, 11, 115.
[6]
Bifulco G.; Bruno I.; Minale L.; Riccio R.; Calignano A.; Debitus C. J. Nat. Prod. 1994, 57, 1294.
[7]
Bifulco G.; Bruno I.; Riccio R.; Lavayre J.; Bourdy G. J. Nat. Prod. 1995, 58, 1254.
[8]
Parmeggiani F.; Rue? Casamajo A.; Walton C.J.W.; Galman J.L.; Turner N.J.; Chica R.A. ACS Catal. 2019, 9, 3482.
[9]
Wan Y.C.; Li Y.H.; Yan C.X.; Yan M.; Tang Z.L. Eur. J. Med. Chem. 2019, 183, 111691.
[10]
Bandari C.; Scull E.M.; Bavineni T.; Nimmo S.L.; Gardner E.D.; Bensen R.C.; Singh S. MedChemComm 2019, 10, 1465.
[11]
Wang S.; Fang K.; Dong G.; Chen S.; Liu N.; Miao Z.; Yao J.; Li J.; Zhang W.; Sheng C. J. Med. Chem. 2015, 58, 6678.
[12]
Zhang M.-Z.; Chen Q.; Yang G.-F. Eur. J. Med. Chem. 2015, 89, 421.
[13]
Tran P.H.; Nguyen X.-T.T.; Chau D.-K.N. Asian J. Org. Chem. 2018, 7, 232.
[14]
Benabadji S.H.; Wen R.; Zheng J.; Dong X.; Yuan S. Acta Pharmacol. Sin. 2004, 25, 666.
[15]
Bharate S.B.; Bharate J.B.; Khan S.I.; Tekwani B.L.; Khan I.A.; Vishwakarma R.A. Eur. J. Med. Chem. 2013, 63, 435.
[16]
Zhou J.M.; Yuan K.Y.; Lin W.Z.; Hu X.C.; Jin Q.Q.; Niu C.G. J. Shanghai JiaoTong Univ. ( Med. Sci. ) 2018, 38, 138.
[17]
Yang W.J.; Jiao R.; Liu Y.; Sun X.D.; Sang M. Herb. Med. 2019, 38, 1146.
[18]
Dong Y.X.; Lushnikova T.; Golla R.M.; Wang X.F.; Wang G.S. Bioorg. Med. Chem. 2017, 25, 864.
[19]
Cho H.J.; Seon M.R.; Lee Y.M.; Kim J.; Kim J.K.; Kim S.G.; Park J.H. J. Nutr. 2008, 138, 17.
[20]
Kunimasa K.; Kobayashi T.; Kaji K.; Ohta T. J. Nutr. 2010, 140, 1.
[21]
Xue L.; Firestone G.L.; Bjeldanes L.F. Oncogene 2005, 24, 2343.
[22]
Wang X.L.; Liu F.; Wang Q.Z.; Xu S.; Luo J.Y. J. For. Eng. 2017, 2, 0.
[23]
Fischer H.E. Chem. Ber. 1886, 19, 2988.
[24]
Fischer H.E. Justus Liebigs Ann. Chem. 1887, 242, 372.
[25]
Yadav J.S.; Reddy B.V.S.; Padmavani B.; Gupta M.K. Tetrahedron Lett. 2004, 45, 7577.
[26]
Ferrer C.; Amijs C.H.M.; Echavarren A.M. Chem.-Eur. J. 2007, 13, 1358.
[27]
Gao R.; Yi C.S. J. Org. Chem. 2010, 75, 3144.
[28]
Tsuchimoto T.; Kanbara M. Org. Lett. 2011, 13, 912.
[29]
Xia D.; Wang Y.; Du Z.T.; Zheng Q.Y.; Wang C.Y. Org. Lett. 2012, 14, 588.
[30]
Vicenzi D.; Sgarbossa P.; Biffis A.; Tubaro C.; Basato M.; Bogialli S.; Pastore P.; Venzo A. Organometallics 2013, 32, 7153.
[31]
Chen S.P.; Li Y.X.; Ni P.H.; Huang H.W.; Deng G.J. Org. Lett. 2016, 18, 5384.
[32]
Cooper L.; Alonso J.M.; Eagling L.; Newson H.; Herath S.; Cox B.; Muoz M.P. Chem.-Eur. J. 2018, 24, 6105.
[33]
Abe T.; Nakamura S.; Yanada R.; Choshi T.; Hibino S.; Ishikura M. Org. Lett. 2 013, 15, 3622.
[34]
Shiri M.; Zolfigol M.A.; Kruger H.G.; Tanbakouchian Z. Chem. Rev. 2010, 110, 2250.
[35]
Yi W.G.; Jia Z.Y.; Li N.B.; Qiu R.H.; Chen J.Y.; Xu X.H. Chin. J. Org. Chem. 2012, 32, 2390.
[35]
( 易卫国, 贾振永, 李宁波, 邱仁华, 陈锦杨, 许新华, 有机化学, 2012, 32, 2390.).
[36]
Gong H.-W.; Xie Z.-F. Chin. J. Org. Chem. 2012, 32, 1195.
[36]
( 宫海伟, 解正峰, 有机化学, 2012, 32, 1195.).
[37]
He L.; Wang X.B.; Du G.F.; Dai B.; Jian T.Y. Chin. J. Org. Chem. 2013, 33, 988.
[37]
( 何林, 王湘波, 杜广芬, 代斌, 简腾跃, 有机化学, 2013, 33, 988.).
[38]
Li L.L.; Ban D.M.; Fu H.; Gong W.; Chen Z.; Yin X.G. Chin. J. Synth. Chem. 2018, 26, 757.
[39]
Yang Y.S.; Cao B.X.; Li S.B.; Zhang Y.P. J. Lanzhou Univ. Technol. 2018, 44, 72.
[40]
Zhang L.Y.; Wu B.Q.; Chen Z.T.; Hu J.J.; Zeng X.F.; Zhong G.F. Chin. J. Org. Chem. 2018, 38, 2028.
[40]
( 章吕烨, 吴彬强, 陈张涛, 胡锦锦, 曾晓飞, 钟国富, 有机化学, 2018, 38, 2028.).
[41]
Wu P.; Wu J.L.; Wang J.Y.; Mei G.J. Chin. J. Org. Chem. 20 18, 38, 1251.
[41]
( 伍平, 吴迦勒, 王静怡, 梅光建, 有机化学, 2018, 38, 1251.).
[42]
Liu T.W.; Zhang T.W.; Zhang S.T.; He J.H.; Zhang Y.T. Chem. J. Chin. Univ. 2019, 40, 719.
[42]
( 刘天伟, 张苏韬, 何江华, 张越涛, 高学校化学学报, 2019, 40, 719.).
[43]
Zhang R.Z.; Wang G.D.; Li H.S.; Duan G.Y.; Wang K.; Xia C.C. Chin. J. Org. Chem. 2019, 39, 1429.
[43]
( 张瑞泽, 王国栋, 李洪爽, 段桂运, 王凯, 夏成才, 有机化学, 2019, 39, 1429.).
[44]
Mao Y.J.; Lu Y.N.; Li T.Z.; Wu Q.; Tan W.; Shi F. Chin. J. Org. Chem. 2020, 40, 3895.
[44]
( 毛雨佳, 陆一楠, 李天真, 吴琼, 谭伟, 石枫, 有机化学, 2020, 40, 3895.).
[45]
Huo C.D.; Sun C.G.; Wang C.; Jia X.D.; Chang W.J. ACS Sustainable Chem. Eng. 2013, 1, 549.
[46]
Taha M.; Ismail N.H.; Imran S.; Anouar E.H.; Ali M.; Jamil W.; Uddin N.; Kashif S.M. RSC Adv. 2016, 6, 3276.
[47]
Vinay K.P.; Pazhamalai A. J. Org. Chem. 2017, 82, 12328.
[48]
Ling F.; Xiao L.; Zhong W.H. Org. Biomol. Chem. 2018, 16, 9274.
[49]
Qiao C.; Liu X.F.; He L.N. Chem.-Asian J. 2018, 13, 2664.
[50]
Huo C.D.; Kang L.S.; Xu X.L.; Jia X.D.; Wang X.C.; Xie H.S.; Yuan Y. Tetrahedron Lett. 2014, 55, 954.
[51]
Liu X.L.; Ma S.; Toy P.H. Org. Lett. 2019, 21, 9212.
[52]
Halimehjani A.Z.; Barati V. ChemistrySelect 2018, 3, 3024.
[53]
Nobuta T.; Fujiya A.; Tada N.; Miura T.; Itoh A. Synlett 2012, 23, 2975.
[54]
Jadhav S.D.; Bakshi D.; Singh A. J. Org. Chem. 2015, 80, 10187.
[55]
Zheng L.W.; Gao F.; Yang C.; Gao G.L.; Zhao Y.T.; Gao Y.; Xia W.J. Org. Lett. 2017, 19, 5086.
[56]
Yang T.B.; Lu H.A.; Shu Y.X.; Ou Y.F.; Hong L.; Au C.T.; Qiu R.H. Org. Lett. 2020 22, 827.
[57]
Liang D.Q.; Huang W.Z.; Yuan L.; Ma Y.H.; Ma J.M.; Ning D.M. Catal. Commun. 2014, 55, 11.
[58]
Shi X.L.; Lin H.K.; Li P.Y.; Zhang W.Q. ChemCatChem 2014, 6, 2947.
[59]
Kuwano S.; Suzuki T.; Arai T. Heterocycles 2018, 97, 163.
[60]
Mathavan S.; Kannan K.; Yamajala B.R.D. Org. Biomol. Chem. 2019, 17, 9620.
[61]
Peng X.J.; Zen Y.; Liu Q.; Liu L.X.; Wang H.S. Org. Chem. Front. 2019, 6, 3615.
[62]
Pathak T.P.; Osiak J.G.; Vaden R.M.; Welm B.E.; Sigman M.S. Tetrahedron 2012, 26, 5203.
[63]
Sasaki S.; Ikekame Y.; Tanayama M.; Yamauchi T.; Higashiyama K. Synlett 2012, 23, 2699.
[64]
Xiao J.; Wen H.; Wang L.; Xu L.B.; Hao Z.H.; Shao C.L.; Wang C.Y. Green Chem. 2016, 18, 1032.
[65]
Pillaiyar T.; Gorska E.; Schnakenburg G.; Mu?ller C.E. J. Org. Chem. 2018, 83, 9902.
[66]
Sun F.L.; Zheng X.J.; Gu Q.; He Q.L.; You S.L. Eur. J. Org. Chem. 2010, 47.
[67]
Zhuo M.H.; Jiang Y.J.; Fan Y.S.; Gao Y.; Liu S.; Zhang S.Q. Org. Lett. 2014, 16, 1096.
[68]
Kim Y.; Lee J.; Jung J.Y.; Kim S.G. Tetrahedron Lett. 2019, 60, 1625.
文章导航

/