研究论文

醋酸铜促进的酰胺-噁唑啉化合物与芳基硫醇的C—H键双硫代化反应研究

  • 王涛 ,
  • 王晓莎 ,
  • 宋雅雯 ,
  • 霍晶晶 ,
  • 周敬栓 ,
  • 康庆伟 ,
  • 刘澜涛
展开
  • a 商丘师范学院化学化工学院 药物绿色合成河南省工程实验室 河南商丘 476000
    b 商丘师范学院化学化工学院 河南省生物分子识别与传感重点实验室 河南商丘 476000
    c 郑州大学化学学院 郑州 450001

收稿日期: 2020-09-12

  修回日期: 2020-09-30

  网络出版日期: 2020-10-22

基金资助

河南省高等学校重点科研(19A150035); 河南省科技攻关(192102110222); 河南省高校科技创新人才基金(14HASTIT016); 河南省科技创新杰出人才基金(184100510011)

Cu(OAc)2-Mediated C—H Bond Dithiolation of Amide-Oxazolines with Aryl Thiols

  • Tao Wang ,
  • Xiaosha Wang ,
  • Yawen Song ,
  • Jingjing Huo ,
  • Jingshuan Zhou ,
  • Qingwei Kang ,
  • Lantao Liu
Expand
  • a Henan Engineering Laboratory of Green Synthesis for Pharmaceuticals, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000
    b Henan Key Laboratory of Biomolecular Recognition and Sensing, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000
    c College of Chemistry, Zhengzhou University, Zhengzhou 450001
* Corresponding authors. E-mail: ;

Received date: 2020-09-12

  Revised date: 2020-09-30

  Online published: 2020-10-22

Supported by

Key Science Research of Education Committee in Henan Province(19A150035); Key Scienti?c and Technological Project of Henan Province(192102110222); Program for Science & Technology Innovation Talents in Universities of Henan Province(14HASTIT016); Program of Science and Technology Innovation Talents of Henan Province(184100510011)

摘要

以酰胺-噁唑啉为辅助基团, 在廉价的醋酸铜促进下, 实现了酰胺衍生物C(sp2)—H键与芳基硫醇S—H键的脱氢偶联反应; 以中等到优秀的产率(最高可达90%)简单高效地合成了一系列双硫化的酰胺衍生物. 值得一提的是, 底物范围并不局限于各种取代苯基酰胺化合物, 吡啶基酰胺化合物也可以兼容. 该反应的特点是: 金属廉价、底物范围广、反应条件温和、无需外加配体、空气作为氧化剂、区域选择性好(仅酰胺基团邻位的C—H键发生反应, 而噁唑啉基团邻位的C—H键不发生反应); 此外, 克级规模的反应表明了其在合成中的实用性.

本文引用格式

王涛 , 王晓莎 , 宋雅雯 , 霍晶晶 , 周敬栓 , 康庆伟 , 刘澜涛 . 醋酸铜促进的酰胺-噁唑啉化合物与芳基硫醇的C—H键双硫代化反应研究[J]. 有机化学, 2021 , 41(3) : 1098 -1107 . DOI: 10.6023/cjoc202009030

Abstract

An efficient copper-mediated dithiolation of C(sp2)—H bonds with aryl thiols was achieved by using amide-oxazo- line as directing group. This strategy gives a variety of functionalized thioethers in moderate to excellent yields (up to 90%) in simple and efficient way. Importantly, the substrate scope is not limited to various substituted phenylamides, and diverse pyridine amides are also compatible. Furthermore, the protocol has been successfully implemented for the gram-scale synthesis as well.

参考文献

[1]
Fraústo da Silva, J.R.; Williams, R. J. P. The Biological Chemistry of the Elements, Oxford University Press, New York, 2001.
[2]
(a) Scott, K. A.; Njardarson, J. T. Top. Curr. Chem. 2018, 376, 5.
[2]
(b) Zhao, J.; Jiang, X. Chin. Chem. Lett. 2018, 29, 1079.
[3]
Mellah, M.; Voituriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133.
[4]
Cinar, M. E.; Ozturk, T. Chem. Rev. 2015, 115, 3036.
[5]
(a) Khanal, H. D.; Kim, S.H. Lee, Y. R. RSC Adv. 2016, 6, 58501.
[5]
(b) Dong, Y.-T.; Jin, Q.; Zhou, L.; Chen, J. Org. Lett. 2016, 18, 5708.
[5]
(c) Li, Y.; Zhu, F.; Wang, Z.; Wu, X.-F. Chem. Asian J. 2016, 11, 3503.
[5]
(d) Yang, Z.-H.; An, Y.-L.; Chen, Y.; Shao, Z.-Y.; Zhao, S.-Y. Adv. Synth. Catal. 2016, 358, 3869.
[5]
(e) Shen, C.; Zhang, P.; Sun, Q.; Bai, S.; Hor, T. S. A.; Liu, X. Chem. Soc. Rev. 2015, 44, 291.
[6]
For selected reviews on transition metals catalyzed C—H functionalization, see: (a) Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38, 635.
[6]
(b) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Wang, M.-M.; Dai, H.-X. Synthesis 2016, 48, 4381.
[6]
(c) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
[6]
(d) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.
[6]
(e) Hu, Y.; Wang, C. Acta Phys.-Chim. Sin. 2019, 35, 913.
[7]
(a) Jiang, Y.-J.; Liang, G.-H.; Zhang, C.; Loh, T.-P. Eur. J. Org. Chem. 2016, 2016, 3326.
[7]
(b) Iwasaki, M.; Nishihara, Y. Dalton Trans 2016, 45, 15278.
[7]
(c) Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. J. Org. Chem. 2014, 79, 11330.
[7]
(d) Iwasaki, M.; Lyanaga, M.; Tsuchiya, Y.; Nishimura, Y.; Li, W.-J.; Li, Z.-P.; Nishihara, Y. Chem.-Eur. J. 2014, 20, 2459.
[8]
(a) Xie, W.-C.; Li, B.; Wang, B.-Q. J. Org. Chem. 2016, 81, 396.
[8]
(b) Yang, Y.-X.; Hou, W.; Qin, L.-H.; Du, J.-J.; Feng, H.-J.; Zhou, B.; Li, Y.-C. Chem.-Eur. J. 2014, 20, 416.
[9]
(a) Ma, W.; Weng, Z.; Fang, X.; Gu, L.; Song, Y.; Ackermann, L. Eur. J. Org. Chem. 2019, 2019, 41.
[9]
(b) Ma, W.; Weng, Z.; Rogge, T.; Gu, Li.; Lin, J.; Peng, A.; Luo, X.; Gou, X.; Ackermann, L. Adv. Synth. Catal. 2018, 360, 704.
[9]
(c) Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G. S.; Baidya, M. Org. Lett. 2017, 19, 2430.
[9]
(d) Ma, W.; Dong, H.; Wang, D.; Ackermann, L. Adv. Synth. Catal. 2017, 359, 966.
[10]
(a) Gao, F.; Zhu, W.; Zhang, D.-Y.; Li, S.-J.; Wang, J.; Liu, H. J. Org. Chem. 2016, 81, 9122.
[10]
(b) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Shi, B.-F. Chem. Commun. 2015, 51, 4069.
[10]
(c) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Zhang, Z.-Z.; Shi, B.-F. Chem. Commun. 2015, 51, 7341.
[10]
(d) Lin, C.; Yu, W.-L.; Yao, J.-Z.; Wang, B.-J.; Liu, Z.-X.; Zhang, Y.-H. Org. Lett. 2015, 17, 1340.
[10]
(e) Wang, X.; Qiu, R.-H.; Yan, C.-Y.; Reddy, V. P.; Zhu, L.-Z.; Xu, X.-H.; Yin, S.-F. Org. Lett. 2015, 17, 1970.
[11]
Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
[12]
Chu, L.-L.; Yue, X.-Y.; Qing, F.-L. Org. Lett. 2010, 12, 1644.
[13]
Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
[14]
Liu, S.-L.; Li, X.-H.; Shi, T.-H.; Yang, G.-C.; Wang, H.-L.; Gong, J.-F.; Song, M.- P. Eur. J. Org. Chem. 2017, 2017, 2280.
[15]
(a) Li, Y.; Liu, Y.-J.; Shi, B.-F. Adv. Synth. Catal. 2017, 359, 4117.
[15]
(b) Rao, W.-H.; Shi, B.-F. Org. Lett. 2015, 17, 2784.
[15]
(c) Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. 2014, 16, 5644.
[16]
(a) Jiang, Y.; Feng, Y.-Y.; Zou, J.-X.; Lei, S.; Hu, X.-L.; Yin, G.-F.; Tan, W.; Wang, Z. J. Org. Chem. 2019, 84, 10490.
[16]
(b) Kong, W.-J.; Shao, Q.; Li, M.-H.; Zhou, Z.-L.; Xu, H.; Dai, H.-X.; Yu, J.-Q. Organometallics 2018, 37, 2832.
[16]
(c) Yan, X.-B.; Gao, P.; Yang, H.-B.; Li, Y.-X.; Liu, X.-Y.; Liang, Y.-M. Tetrahedron 2014, 70, 8730.
[17]
(a) Wang, T.; Xu, K.; Zhang, A.; Wang, W.; Liu, L. Chin. J. Org. Chem. 2018, 38, 259. (in Chinese)
[17]
(王涛, 许凯, 张安安, 王万里, 刘澜涛, 有机化学, 2018, 38, 259.)
[17]
(b) Wang, T.; Xu, K.; Liu, L.; Xie, H.; Li, Y.; Zhao, W-. X. Transition Met. Chem. 2016, 41, 525.
[18]
Ouyang, K.; Xi, Z. Acta Chim. Sinica 2013, 71, 13. (in Chinese)
[18]
(欧阳昆冰, 席振峰, 化学学报, 2013, 71, 13.)
[19]
Shang, M.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354.
文章导航

/