综述与进展

三氟甲基自由基促进的烯烃官能团迁移新进展

  • 邱云亮 ,
  • 魏凤姣 ,
  • 叶鎏 ,
  • 赵旻玥
展开
  • 1 南京森林警察学院 刑事科学技术学院 南京 210023

收稿日期: 2020-09-15

  修回日期: 2020-11-18

  网络出版日期: 2020-12-05

基金资助

中央高校基本科研业务费专项(LGZD202006); 大学生实践创新训练计划(201912213019G); 大学生实践创新训练计划(201912213023G)

Advances in Trifluoromethylation-Promoted Functional Group Migration of Alkenes

  • Yunliang Qiu ,
  • Fengjiao Wei ,
  • Liu Ye ,
  • Minyue Zhao
Expand
  • 1 Department of Criminal Science and Technology, Nanjing Forest Police College, Nanjing 210023
* Corresponding author. E-mail:

Received date: 2020-09-15

  Revised date: 2020-11-18

  Online published: 2020-12-05

Supported by

Special Funds for Fundamental Scientific Research of Central Universities(LGZD202006); College Students' Practice and Innovation Training Program(201912213019G); College Students' Practice and Innovation Training Program(201912213023G)

摘要

引入三氟甲基官能团可以有效地改善功能分子的化学稳定性、代谢稳定性及脂溶性等理化性质. 发展三氟甲基化合物的高效合成方法具有重要的应用价值. 近年来, 三氟甲基自由基与烯烃的反应得到了迅速的发展, 其形成的烷基自由基物种促进分子内官能团的迁移, 极大地丰富了烯烃的官能团化方式, 在实现烯烃三氟甲基官能团化的同时, 为迅速构建多样性的分子提供了有效的策略, 并推动了有机自由基化学的发展. 根据烯烃类型的不同, 分为官能团化的烯丙基化合物和非活化烯烃两大部分, 对近年来发展的三氟甲基自由基促进的烯烃的双官能团化反应进行了总结. 各部分根据迁移官能团种类不同, 详细讨论了不同方式的自由基产生途径、反应的适用范围和局限性以及不同催化体系的反应机理. 最后, 进一步对基于烯烃三氟甲基化引发的官能团迁移反应进行了总结, 分析了目前的一些研究现状.

本文引用格式

邱云亮 , 魏凤姣 , 叶鎏 , 赵旻玥 . 三氟甲基自由基促进的烯烃官能团迁移新进展[J]. 有机化学, 2021 , 41(5) : 1821 -1834 . DOI: 10.6023/cjoc202009036

Abstract

The incorporation of trifluoromethyl functional groups can effectively improve the chemical stability, metabolic stability and liposolubility of functional molecules. Therefore, the development of efficient methods to synthesize trifluoromethyl compounds is of significant importance. In recent years, great progress has been made in the reaction of a trifluoromethyl radical and alkene, in which alkyl radical species was first formed, followed to promote intramolecular functional groups migration. The novel pathways not only provide practical strategy for the functionalization of alkenes, which can realize the rapid construction of diverse molecules, but also promote the development of organic radical chemistry. The recent advances in alkene trifluoromethylation-initiated functional group migration including functionalized allylic compounds and non-activated alkenes are sumarrized. According to different types of migrating functional groups, the reaction in the two different sections are classified, in which the pathways of free radical generation, the scope and limits of the reaction and the reaction mechanism in different catalytic systems are discussed and highlighted in detail. Finally, a perspective on the further development of this research area is made.

参考文献

[1]
(a) Harvey, D. F.; Sigano, D. M. Chem. Rev. 1996, 96, 271.
[1]
(b) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
[1]
(c) Baird, M. C. Chem. Rev. 2000, 100, 1471.
[1]
(d) Takacs, J. M.; Jiang, X.-T. Curr. Org. Chem. 2003, 7, 369.
[1]
(e) Prunet, J. Angew. Chem., nt. Ed. 2003, 42, 2826.
[1]
(f) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., nt. Ed. 2004, 43, 3368.
[1]
(g) Chirik, P. J. Acc. Chem. Res. 2015, 48, 1687.
[2]
(a) Lan, X.; Wang, N.; Xing, Y. Eur. J. Org. Chem. 2017,5812.
[2]
(b) Liu, G.; Shannon, S. S. Chem. Rev. 2011, 111, 2981.
[2]
(c) Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Kojer, H. Angew. Chem. 1959, 71, 176.
[2]
(d) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, A. Angew. Chem., nt. Ed. 1962, 1, 80.
[2]
(e) Jira, R. Angew. Chem., nt. Ed. 2009, 48, 9034.
[3]
(a) Filler, R.; Kobayashi, Y.; Yagupolskii, L. M. Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications, Elsevier, Amsterdam,1993.
[3]
(b) Schlosser, M. Angew. Chem., nt. Ed. 2006, 45, 5432.
[3]
(c) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[4]
(a) Kellner, R.; Bruzzese, D.; Winslow, W. W.; Rada, R. T.; Wall, F. J. Clin. Pharmacol. 1978, 18, 20.
[4]
(b) Fann, W. E.; Sullivan, J. L.; Miller, R. D. Curr. Ther. Res. 1974, 16, 1281.
[4]
(c) Fann, W. E.; Richman, B. W.; Pitts, W. M. Curr. Ther. Res. 1982, 32, 906.
[5]
(a) Freston, J. W.; Pilmer, B. L.; Chiu, Y. L.; Wang, Q.; Stolle, J. C.; Griffin, J. S.; Lee, C. Q. Aliment. Pharmacol. Ther. 2004, 19, 1111.
[5]
(b) Miura, M.; Tada, H.; Yasui-Furukori, N.; Uno, T.; Sugawara, K.; Tateishi, T.; Suzuki, T. Eur. J. Clin. Pharmacol. 2004, 60, 623.
[5]
(c) Sachs, G.; Shin, J. M.; Howden, C. W. Aliment. Pharmacol. Ther. 2006, 23, 2.
[5]
(d) Zimmermann, A. E.; Katona, B. G. Pharmacotherapy 1997, 17, 308.
[6]
(a) Tanaka, Y.; DeLuca, H. F.; Kobayashi, Y.; Ikekawa, N. Arch. Biochem. Biophys. 1984, 229, 348.
[6]
(b) Morii, H.; Ogura, Y.; Koshikawa, S.; Mimura, N.; Suzuki, M.; Kurokawa, K.; Marumo, F.; Kawaguchi, Y.; Maeda, K.; Nishizawa, Y.; Inoue, S.; Fujimi, S.; Falecalcitriol Phase Secondary Hyperparathyroidism Treatment Study Group III. J. Bone Miner. Metab. 1998, 16, 34.
[6]
(c) Akiba, T.; Marumo, F.; Owada, A.; Kurihara, S.; Inoue, A.; Chida, Y.; Ando, R.; Shinoda, T.; Ishida, Y.; Ohashi, Y. Am. J. Kidney Dis. 1998, 32, 238.
[6]
(d) Durakovic, C.; Malabanan, A.; Holick, M. F. Br. J. Dermatol. 2001, 144, 500.
[7]
(a) Delbarre, B.; Dumas, G. Experientia 1969, 25, 850.
[7]
(b) Prasad, T. N. V.; Rao, E. V.; Sastry, B. S.; Sastry, C. S. P.; Kostek, L. J. Anal. Profiles Drug Subst. 1991, 20, 665.
[8]
(a) Bhatt, D. L.; Lincoff, A. M.; Gibson, C. M.; Stone, G. W.; McNulty, S.; Montalescot, G.; Kleiman, N. S.; Goodman, S. G.; White, H. D.; Mahaffey, K. W.; C. V. Pollack, Jr. C. V.; Manoukian, S. V.; Chew, D. P.; Cura, F.; Manukov, I.; Tousek, F.; Jafar, M. Z.; Arneja, J.; Skerjanec, S.; Harrington, R. A. N. Engl. J. Med. 2009, 361, 2330.
[8]
(b) Harrington, R. A.; Stone, G. W.; McNulty, S.; White, H. D.; Lincoff, A. M.; Gibson, C. M.; Pollack, Jr. C. V.; Montalescot, G.; Mahaffey, K. W.; Kleiman, N. S.; Goodman, S. G.; Amine, M.; Angiolillo, D. J.; Becker, R. C.; Chew, D. P.; French, W. J.; Leisch, F.; Parikh, K. H.; Skerjanec, S.; Bhatt, D. L. N. Engl. J. Med. 2009, 361, 2318.
[8]
(c) Kastrati, A.; Ndrepepa, G. N. Engl. J. Med. 2009, 361, 2382.
[8]
(d) Angiolillo, D. J.; Schneider, D. J.; Bhatt, D. L.; French, W. J.; Price, M. J.; Saucedo, J. F.; Shaburishvili, T.; Huber, K.; Prats, J.; Liu, T.; Harrington, R. A.; Becker, R. C. J. Thromb. Thrombolysis 2012, 34, 44.
[8]
(e) Leonardi, S.; Mahaffey, K. W.; White, H. D.; Gibson, C. M.; Ston, G. W.; Steg, G. W.; Hamm, C. W.; Price, M. J.; Todd, M.; Dietrich, M.; Gallup, D.; Liu, T.; Skerjanec, S.; Harrington, R. A.; Bhatt, D. L. Am. Heart J. 2012, 163, 768.
[9]
(a) Wang, X.; Zhang, Y.; Wang, J. Sci. Sin.: Chim. 2012, 42, 1417. (in Chinese).
[9]
(王兮, 张艳, 王剑波, 中国科学: 化学, 2012, 42, 1417.)
[9]
(b) Zeng, W.; Chen, F. Chin. J. Appl. Chem. 2014, 31, 627. (in Chinese).
[9]
(曾薇, 陈甫雪, 应用化学, 2014, 31, 627.)
[9]
(c) Li, M.; Kang, H.; Xue, X.-S.; Cheng, J.-P. Acta Chim. Sinica 2018, 76, 988. (in Chinese).
[9]
(李曼, 康会英, 薛小松, 程津培, 化学学报, 2018, 76, 988.)
[9]
(d) Ji, X.; Shi, G.; Zhang, Y. Chin. J. Org. Chem. 2019, 39, 929. (in Chinese).
[9]
(季小明, 史广法, 张扬会, 有机化学, 2019, 39, 929.)
[10]
(a) Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2015, 44, 5220.
[10]
(b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
[10]
(c) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328.
[10]
(d) Zhang, G.; Liu, Y.; Zhao, J.; Li, Y.; Zhang, Q. Sci. China: Chem. 2019, 62, 1476.
[10]
(e) Wu, X.; Zhu, C. Acc. Chem. Res. 2020, 53, 1620.
[10]
(f) Chen, D.; Ji, M.; Yao, Y.; Zhu, C. Acta Chim. Sinica 2018, 76, 951. (in Chinese).
[10]
(陈栋, 吉梅山, 姚英明, 朱晨, 化学学报, 2018, 76, 951.)
[11]
(a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., nt. Ed. 2013, 52, 6962.
[11]
(b) Liu, X.; Wu, X. Synlett 2013, 24, 1882.
[12]
Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Angew. Chem., nt. Ed. 2013, 52, 9781.
[13]
Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
[14]
Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.
[15]
Huang, H.-L.; Yan, H.; Gao, G.-L.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
[16]
Cai, S.; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.; Huang, M. Adv. Synth. Catal. 2018, 360, 4084.
[17]
Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224.
[18]
Guan, Z.; Wang, H.; Huang, Y.; Wang, Y.; Wang, S.; Lei, A. Org. Lett. 2019, 21, 4619.
[19]
Natho, P.; Allen, L. A. T.; Parsons, P. J. Tetrahedron Lett. 2020, 61, 151695.
[20]
Sahoo, B.; Li, J.-L.; Glorius, F. Angew. Chem., nt. Ed. 2015, 54, 11577.
[21]
Woo, S. B.; Kim, D. Y. J. Fluorine Chem. 2015, 178, 214.
[22]
Kang, J.-C.; Tu, Y.-Q.; Dong, J.-W.; Chen, C.; Zhou, J.; Ding, T.-M.; Zai, J.-T.; Chen, Z.-M.; Zhang, S.-Y. Org. Lett. 2019, 21, 2536.
[23]
Jung, H. I.; Kim, Y.; Kim, D. Y. Org. Biomol. Chem. 2019, 17, 3319.
[24]
Li, M.; Zhu, X.-Y.; Qiu, Y.-F.; Han, Y.-P.; Xia, Y.; Wang, C.-T.; Li, X.-S.; Wei, W.-X.; Liang, Y.-M. Adv. Synth. Catal. 2019, 361, 2945.
[25]
Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480.
[26]
Fuentes, N.; Kong, W.; Fern?ndez-S?nchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
[27]
Kong, W.; Fuentes, N.; García-Domínguez, A.; Merino, E.; Nevado, C. Angew. Chem., nt. Ed. 2015, 54, 2487.
[28]
Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., nt. Ed. 2014, 53, 11890.
[29]
Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., nt. Ed. 2015, 54, 4041.
[30]
Huang, L.; Lin, J.-S.; Tan, B.; Liu, X.-Y. ACS Catal. 2015, 5, 2826.
[31]
Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Org. Lett. 2015,17 , 1589.
[32]
Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2015, 21, 6718.
[33]
Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 2852.
[34]
Lonca, G. H.; Ong, D. Y.; Tran, T. M. H.; Tejo, C.; Chiba, S.; Gagosz, F. Angew. Chem., nt. Ed. 2017, 56, 11440.
[35]
Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev. 2015, 44, 5220.
[36]
Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
[37]
Li, L.; Gu, Q.-S.; Wang, N.; Song, P.; Li, Z.-L.; Li, X.-H.; Wang, F.-L.; Liu, X.-Y. Chem. Commun. 2017, 53, 4038.
[38]
Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139, 1388.
[39]
Jeon, J.; He, Y.-T.; Shin, S.; Hong, S. Angew. Chem., nt. Ed. 2020, 59, 281.
[40]
Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
[41]
Tang, X.; Studer, A. Angew. Chem., nt. Ed. 2018, 57, 814.
[42]
Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., nt. Ed. 2017, 56, 4545.
[43]
Tang, X.; Studer, A. Chem. Sci. 2017, 8, 6888.
[44]
Tang, N.; Shao, X.; Wang, M.; Wu, X.; Zhu, C. Acta Chim. Sinica 2019, 77, 922. (in Chinese).
[44]
(汤娜娜, 邵鑫, 王明扬, 吴新鑫, 朱晨, 化学学报, 2019, 77, 922.)
[45]
Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026.
[46]
Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y. Angew. Chem., nt. Ed. 2016, 55, 15100.
Wang, N.; Wang, J.; Guo, Y.-L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H.-X.; Guo, Z.; Li, Z.-L.; Liu, X.-Y. Chem. Commun. 2018, 54, 8885.
文章导航

/