研究论文

利用芳基乙烷的脱氢硝化合成硝基芳香烯烃的新方法

  • 穆兵 ,
  • 吴俊良 ,
  • 张广安
展开
  • a 郑州大学化学学院 郑州 450001
    b 郑州师范学院化学化工学院 郑州 450044
* Corresponding author. E-mail:

收稿日期: 2020-08-24

  修回日期: 2020-11-27

  网络出版日期: 2021-02-07

基金资助

国家自然科学基金(21702191)

Alternative Approach for the Synthesis of Nitroaromatic Olefins via Dehydrogenative Nitration of Easily Available Arylethanes

  • Bing Mu ,
  • Junliang Wu ,
  • Guang'an Zhang
Expand
  • a College of Chemistry, Zhengzhou University, Zhengzhou 450001
    b College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044

Received date: 2020-08-24

  Revised date: 2020-11-27

  Online published: 2021-02-07

Supported by

the National Natural Science Foundation of China(21702191)

摘要

硝基烯烃是有机合成化学中常见的重要中间体, 其合成方法主要通过硝基烷烃与醛或酮的缩合、消除, 烯烃直接脱氢硝化或者烯基羧酸脱羧硝化得到目标产物, 但是这些合成方法由于原料价格昂贵, 在大规模生产中受到限制. 本研究首次采用廉价易得的芳基乙烷与硝酸钡为原料, 以铜/银为催化剂, 过硫酸钾为氧化剂, 通过脱氢硝化反应合成硝基芳香烯烃. 在优化的反应体系中, 1,1-二苯基乙烷、苯基乙烷、4-乙基联苯及乙基萘类化合物能与硝酸钡进行脱氢硝化反应, 以中等至好的收率获得 E型硝基芳香烯烃.

本文引用格式

穆兵 , 吴俊良 , 张广安 . 利用芳基乙烷的脱氢硝化合成硝基芳香烯烃的新方法[J]. 有机化学, 2021 , 41(1) : 250 -257 . DOI: 10.6023/cjoc202008041

Abstract

Nitroolefin is a common and versatile reagent, synthesis of which from aldehydes/ketones, α, β-unsaturated carboxylic acids or olefins is generally limited by the high cost of raw materials in industrial processes in the future. Herein, an alternative and economical protocol for the synthesis of nitroaromatic olefins directly from easily available arylethanes with barium nitrate using Cu/Ag as cocatalyst and ammonium persulfate as the terminal oxidant is reported. Additionally, 1,1-diphenylethanes, phenylethanes, 4-ethyl-1,1'-biphenyl and ethylnaphthalenes were suitable substrates for the current dehydrogenative nitration, and provided E-nitroaromatic olefins in moderate to good yields.

参考文献

[1]
Reddy M.A.; Jain N.; Yada D.; Kishore C.; Reddy V.J.; Reddy P.S.; Addlagatta A.; Kalivendi S.V.; Sreedhar B. J. Med. Chem. 2011, 54, 6751.
[2]
Lu L.Q.; Chen J.R.; Xiao W.J. Acc. Chem. Res. 2012, 45, 1278.
[3]
Kaap S.; Quentin I.; Tamiru D.; Shaheen M.; Eger K.; Steinfelder H.J. Biochem. Pharmacol. 2003, 65, 603.
[4]
Uehara H.; Imashiro R.; Hernández-Torres G.; Barbas III, C.F.Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20672.
[5]
Meah Y.; Massey V. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10733.
[6]
Ishii T.; Fujioka S.; Sekiguchi Y.; Kotsuki H. J. Am. Chem. Soc. 2004, 126, 9558.
[7]
Huang H.B.; Jacobsen E.N. J. Am. Chem. Soc. 2006, 128, 7170.
[8]
Tripathi C.B.; Kayal S.; Mukherjee S. Org. Lett. 2012, 14, 3296.
[9]
Bai B.; Wang L.; Yang J.; Cai L.L.; Liu Q.J.; Xi, Gao. L.; Zhao, Z.W.; Mao, D.B.; Chen, Z.F. Chin. J. Org. Chem. 2019, 39, 1053. (in Chinese)
[9]
( 白冰, 王龙, 杨静, 蔡莉莉, 刘前进, 席高磊, 赵志伟, 毛多斌, 陈芝飞, 有机化学, 2019, 39, 1053.).
[10]
Luo S.P.; Wang L.P.; Yue H.D.; Le Z.G.; Yang W.L.; Xu D.Q.; Xu Z.Y. Acta Chim Sinica. 2006, 64, 1483.
[11]
Evans D.A.; Mito S.; Seidel D. J. Am. Chem. Soc. 2007, 129, 11583.
[12]
March J. Advanced Organic Chemistry, 3rd ed., John Wiley & Sons, New York, 1985.
[13]
Albrecht L.; Dickmeiss G.; Acosta F.C.; Rodríguez-Escrich C.; Davis R.L.; Jorgensen K.A. J. Am. Chem. Soc. 2012, 134, 2543.
[14]
Liu Y.K.; Nappi M.; Arceo E.; Vera S.; Melchiorre P. J. Am. Chem. Soc. 2011, 133, 15212.
[15]
Arai T.; Mishiro A.; Yokoyama N.; Suzuki K.; Sato H. J. Am. Chem. Soc. 2010, 132, 5338.
[16]
Denmark S.E.; Thorarensen A. Chem. Rev. 1996, 96, 137.
[17]
Yan L.J.; Xu H.; Wang Y.; Dong J.W.; Wang Y.C. Chin. J. Org. Chem. 2020, 40, 284. (in Chinese)
[17]
( 严丽君, 徐菡, 王艳, 董建伟, 王永超, 有机化学, 2020, 40, 284.).
[18]
Basavaiah D.; Reddy B.S.; Badsara S.S. Chem. Rev. 2010, 110, 5447.
[19]
Nair D.K.; Mobin S.M.; Namboothiri I.N.N. Org. Lett. 2012, 14, 4580.
[20]
Quan X.J.; Ren Z.H.; Wang Y.Y.; Guan Z.H. Org. Lett. 2014, 16, 5728.
[21]
Chen Y.F.; Nie G.; Zhang Q.; Ma S.; Li H.; Hu Q.Q. Org. Lett. 2015, 17, 1118.
[22]
Kurti L.; Czako B. Strategic Applications of Named Reactions in Organic Synthesis, Elsevier Academic Press, London , 2005.
[23]
Fioravanti S.; Pellacani L.; Tardella P.A.; Vergari M.C. Org. Lett. 2008, 10, 1449.
[24]
Hassner A.; Kropp J.E.; Kent G.J. J. Org. Chem. 1969, 34, 2628.
[25]
Ranganathan S.; Kar S.K. J. Org. Chem. 1970, 35, 3962.
[26]
Corey E.J.; Estreicher H. J. Am. Chem. Soc. 1978, 100, 6294.
[27]
Barluenga J.; Rodríguez M.A.; Campos P.J.; Asensio G. J. Chem. Soc., Chem. Commun. 1987, 1491.
[28]
Barluenga J.; Rodríguez M.A.; Campos P.J. J. Chem. Soc., Perkin Trans. 1 1990, 2807.
[29]
Sy W.W.; By A.W. Tetrahedron Lett. 1985, 26, 1193.
[30]
Jew S.S.; Kim H.D.; Cho Y.S.; Cook C.H. Chem. Lett. 1986, 15, 1747.
[31]
Hwu J.R.; Chen K.L.; Ananthan S.; Patel H.V. Organometallics 1996, 15, 499.
[32]
Ghosh D.; Nichols D.E. Synthesis 1996, 195.
[33]
Suzuki H.; Mori T. J. Org. Chem. 1997, 62, 6498.
[34]
Mukaiyama T.; Hata E.; Yamada T. Chem. Lett. 1995, 24, 505.
[35]
Hata E.; Yamada T.; Mukaiyama T. Bull. Chem. Soc. Jpn. 1995, 68, 3629.
[36]
Jovel I.; Prateeptongkum S.; Jackstell R.; Vogl N.; Weckbecker C.; Beller M. Adv. Synth. Catal. 2008, 350, 2493.
[37]
Varma R.S.; Naicker K.P.; Liesent P.J. Tetrahedron Lett. 1998, 39, 3977.
[38]
Manna S.; Jana S.; Saboo T.; Maji A.; Maiti D. Chem. Commun. 2013, 49, 5286.
[39]
Rokade B.V.; Prabhu K.R. Org. Biomol. Chem. 2013, 11, 6713.
[40]
Das J.P.; Sinha P.; Roy S. Org. Lett. 2002, 4, 3055.
[41]
Baruah D.; Pahari P.; Konwar D. Tetrahedron Lett. 2015, 56, 2418.
[42]
Yang Z.; Li J.; Hua J.; Yang T.; Yi J.M.; Zhou C.S. Synlett 2017, 28, 1079.
[43]
Luo Z.G.; Xu F.; Fang Y.Y.; Liu P.; Xu X.M.; Feng C.T.; Li Z.; He J. Res. Chem. Intermed. 2016, 42, 6079.
[44]
Maity S.; Manna S.; Rana S.; Naveen T.; Mallick A.; Maiti D. J. Am. Chem. Soc. 2013, 135, 3355.
[45]
Naveen T.; Maity S.; Sharma U.; Maiti D. J. Org. Chem. 2013, 78, 5949.
[46]
Maity S.; Naveen T.; Sharma U.; Maiti D. Org. Lett. 2013, 15, 3384.
[47]
Zhao A.; Jiang Q.; Jia J.; Xu B.; Liu Y.F.; Zhang M.Z.; Liu Q.; Luo W.P.; Guo C.C. Tetrahedron Lett. 2016, 57, 80.
[48]
Whiting K.; Carmona L.G.; Sousa T. Renewable Sustainable Energy Rev. 2017, 76, 202.
[49]
Degnan T.F. J. Catal. 2003, 216, 32.
[50]
Grant J.T.; Venegas J.M.; McDermott W.P.; Hermans I. Chem. Rev. 2018, 118, 2769.
[51]
Kumar A.; Bhatti T.M.; Goldman A.S. Chem. Rev. 2017, 117, 12357.
[52]
Wang Y.L.; Qian L.; Huang Z.D.; Liu G.X.; Huang Z. Chin. J. Chem. 2020, 38, 837.
[53]
Sathyamoorthi S.; Banerjee S. ChemistrySelect 2017, 2, 10678.
[54]
Sathyamoorthi S.; Du Bois, J. Org. Lett. 2016, 18, 6308.
[55]
Banerjee S.; Sathyamoorthi S.; Du Bois J.; Zare R.N. Chem. Sci. 2017, 8, 7003.
[56]
Manna S.; Antonchick A.P. Chem. -Eur. J. 2017, 23, 7825.
[57]
Burkhard C.A.; Brown J.F., Jr. US 2867669, 1959.
[58]
Tang X.J.; Dolbier Jr.W.R. Angew. Chem. Int. Ed. 2015, 54, 4246.
[59]
Ambala S.; Singh R.; Singh M.; Cham P.S.; Gupta R.; Munagala G.; Yempalla K.R.; Vishwakarma R.A.; Singh P.P. RSC Adv. 2019, 9, 30428.
[60]
Huie R.E.; Clifton C.L.; Kafafi S.A. J. Phys. Chem. 1991, 95, 9336.
[61]
Huie R.E.; Clifton C.L. J. Phys. Chem. 1990, 94, 8561.
[62]
Liu Y.; Wang Q.L.; Chen Z.; Zhou Q.; Zhou C.S.; Xiong B.Q.; Zhang P.L.; Yang C.A.; Tang K.W. Org. Biomol. Chem. 2019, 17, 1365.
[63]
Manna S.; Jana S.; Saboo T.; Maji A.; Maiti D. Chem. Commun. 2013, 49, 5286.
[64]
Gross Z.; Hoz S. J. Am. Chem. Soc. 1988, 110, 7489.
[65]
Hsieh T.H.H.; Dong V.M. Tetrahedron 2009, 65, 3062.
[66]
Zhao A.; Jiang Q.; Jia J.; Xu, Bin.; Liu, Y.F.; Zhang, M.Z.; Liu, Q.; Luo, W.P.; Guo, C.C. Tetrahedron Lett. 2016, 57, 80.
[67]
Ambala S.; Singh R.; Singh M.; Cham P.S.; Gupta R.; Munagala G.; Yempalla K.R.; Vishwakarma R.A.; Singh P.P. RSC Adv. 2019, 9, 30428.
文章导航

/