研究论文

叔丁基自由基引发的1,2-炔基迁移反应研究

  • 张萍 ,
  • 张天舒 ,
  • 蔡佩君 ,
  • 姜波 ,
  • 屠树江
展开
  • a 中国矿业大学化工学院 江苏徐州 221116
    b 江苏师范大学化学与材料科学学院 江苏徐州 221116
    c 江苏省徐州医药高等职业学校 江苏徐州 221116

收稿日期: 2021-01-26

  修回日期: 2021-02-12

  网络出版日期: 2021-02-26

基金资助

中央高校基本科研专项资金基金(JH180263)

Study on tert-Butyl Radical-Initiated 1,2-Alkynyl Migration

  • Ping Zhang ,
  • Tianshu Zhang ,
  • Peijun Cai ,
  • Bo Jiang ,
  • Shujiang Tu
Expand
  • a School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116
    b School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116
    c Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou, Jiangsu 221116
*Corresponding authors.E-mail:;

Received date: 2021-01-26

  Revised date: 2021-02-12

  Online published: 2021-02-26

Supported by

Fundamental Research Funds for the Central Universities(JH180263)

摘要

报道了一类由叔丁基自由基引发的1,2-炔基迁移反应. 该反应利用特戊醛在二叔丁基过氧化物(DTBP)介导下能产生叔丁基自由基的特性, 将其与1,4-烯炔底物发生自由基加成及炔基迁移过程, 合成了一系列α-炔基酮化合物, 产率优良, 实现了非活化烯烃的烷基炔基化. 基于实验结果及文献报道, 提出了可能的反应机理, 涉及叔丁基自由基激发的自由基加成、反“鲍德温”规则的3-exo-dig环化及炔基迁移过程. 该反应具有官能团兼容性高、无需金属催化剂及操作简便等优点, 为非活化烯烃的双官能团化提供了一种有效的策略.

本文引用格式

张萍 , 张天舒 , 蔡佩君 , 姜波 , 屠树江 . 叔丁基自由基引发的1,2-炔基迁移反应研究[J]. 有机化学, 2021 , 41(6) : 2408 -2416 . DOI: 10.6023/cjoc202101042

Abstract

A new tert-butyl radical-induced 1,2-alkynyl migration reaction is reported. By using the characteristics of in-situ-generation of tert-butyl radical from pivalaldehyde mediated by di-tert-butyl peroxide (DTBP), tert-butyl radical-triggered addition and alkynyl migration of the preformed 1,4-enynes led to the synthesis of a series of α-alkynyl ketones with good to excellent yields, thereby realizing alkylalkynylation of unactivated olefins. Based on the experimental results and literature reports, a possible reaction mechanism is proposed, which involvestert-butyl radical-triggered addition, 3-exo-dig cyclization of anti-“Baldwin” rule and alkynyl migration process. This reaction has the advantages of high functional group compatibility, metal-free conditions, and simple operation, which provides a feasible and effective synthetic strategy for the bifunctionalization of unactivated olefins.

参考文献

[1]
(a) Sharpless, K. B.; Finn, M. G. In Asymmetric Synthesis, Vol. 5, Ed.:Morrison, J. D. Academic Press, Orlando, FL, 1985, p. 247.
[1]
(b) Wei, W.; Cui, H.; Yue, H.; Yang, D. Green Chem. 2018, 20,3197.
[1]
(c) Zhang, T.-S.; Xiong, Y.-J.; Hao, W.-J.; Zhu, X.-T.; Wang, S. L.; Li, G.; Tu, S.-J.; Jiang, B. J. Org. Chem. 2016, 81,9350.
[1]
(d) Zhang, Y.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129,3076.
[1]
(e) Martínez, C.; Mun?iz, K. Angew. Chem., nt. Ed. 2012, 51,703.
[1]
(f) Guan, Z.; Wang, H.; Huang, Y.; Wang, Y.; Wang, S.; Lei, A. Org. Lett. 2019, 21,4619.
[1]
(g) Wang, Z.; Yang, L.; Liu, H.-L.; Tan, Y.-Z.; Bao, W.-H.; Wang, M.; Tang, Z.-L.; He, W.-M. Chin. J. Org. Chem. 2018, 38,2639(in Chinese).
[1]
(王峥, 杨柳, 刘惠兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38,2639.)
[1]
(h) Liu, Y. J.; Lin, L. Q.; Han, Y. H.; Zhang, X. Chin. J. Org. Chem. 2019, 39,2705(in Chinese).
[1]
(刘颖杰, 林立青, 韩莹徽, 张鑫, 有机化学, 2019, 39,2705. )
[2]
(a) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43,6598.
[2]
(b) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49,1937.
[2]
(c) Wu, K.; Liang, Y.; Jiao, N. Molecules 2016, 21,352.
[2]
(d) Lan, X. W.; Wang, N. X.; Xing, Y. Eur. J. Org. Chem. 2017, 39,5821.
[2]
(e) Zhang, J. S.; Liu, L.; Chen, T.; Han, L. B. Chem.-Asian J. 2018, 13,2277.
[2]
(f) Studer, A.; Curran, D. P. Angew. Chem., nt. Ed. 2016, 55,58-102.
[2]
(g) Tang, S.; Liu, K.; Liu, C.; Lei, A. Chem. Soc. Rev. 2015, 44,1070.
[2]
(h) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138,15547.
[2]
(i) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353,1014.
[2]
(j) Wang, D.; Wu, L.; Wang, F.; Wan, X.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139,6811.
[2]
(k) Wu, L.; Wang, F.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2019, 141,1887.
[3]
(a) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49,2413.
[3]
(b) Dhungana, R. K.; Kc, S.; Basnet, P.; Giri, R. Chem. Rec. 2018, 18,1314.
[3]
(c) Koike, T.; Akita, M. Chem 2018, 4,409.
[3]
(d) Qiu, G.; Lai, L.; Cheng, J.; Wu, J. Chem. Commun. 2018, 54,10405.
[3]
(e) Wang, J. Y.; Ma, L.; Li, Y.; Wang, X. S. Chin. J. Org. Chem. 2018, 39,232(in Chinese).
[3]
(王建勇, 马岚, 李彦, 王细胜, 有机化学, 2019, 39,232.)
[3]
(f) Zhang, Z.; Gong, L.; Zhou, X.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Acta Chim. Sinica 2019, 77,783(in Chinese).
[3]
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77,783.)
[3]
(g) Li, X. Y.; Li, Y. J.; Wei, X. S.; Luo, J. R.; Huang, G. B.; Tan, M.-X. Chin. J. Org. Chem. 2019, 39,1831(in Chinese).
[3]
(李秀英, 李亚军, 韦贤生, 罗金荣, 黄国保, 谭明雄, 有机化学, 2019, 39,1831.)
[3]
(h) Rong, J.; Ni, C.-F.; Wang, Y. Z.; Kuang, C. W.; Gu, Y. C.; Hu, J.-B. Acta Chim. Sinica 2017, 75,105(in Chinese).
[3]
(荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75,105.)
[3]
(i) Jiao, Y. H.; Li, Y. J.; Bao, H. L. ACS Catal. 2019, 9,5191.
[3]
(j) Ge, L.; Li, Y. J.; Bao, H. L. Org. Lett. 2019, 21,256.
[4]
(a) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47,654.
[4]
(b) Wu, X. X.; Zhu, C. Acc. Chem. Res. 2020, 53,1620.
[4]
(c) Wu, X. X.; Zhu, C. Chin. J. Chem. 2019, 37,171.
[5]
(a) Yu, P.; Lin, J. S.; Li, L.; Zheng, S. C.; Xiong, Y. P.; Zhao, L. J.; Tan, B.; Liu, X. Y. Angew. Chem., nt. Ed. 2014, 53,11890.
[5]
(b) Li, L.; Li, Z. L.; Wang, F. L.; Guo, Z.; Cheng, Y. F.; Wang, N.; Dong, X. W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X. Y. Nat. Commun. 2016, 7,13852.
[5]
(c) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59,1328.
[5]
(d) Zhao, Q.; Hao, W. J.; Shi, H. N.; Xu, T.; Tu, S. J.; Jiang, B. Org. Lett. 2019, 21,9784.
[5]
(e) Zhou, N. N.; Xu, P.; Li, W. P.; Cheng, Y. X.; Zhu, C. J. Acta Chim. Sinica 2017, 75,60(in Chinese).
[5]
(周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75,60.)
[6]
(a) Stadtmueller, H.; Lentz, R.; Tucker, C. E.; Stuedemann, T.; Doerner, W.; Knochel, P. J. Am. Chem. Soc. 1993, 115,7027.
[6]
(b) Thapa, S.; Basnet, P.; Giri, R. J. Am. Chem. Soc. 2017, 139,5700.
[6]
(c) Ishiyama, T.; Murata, M.; Suzuki, A.; Miyaura, N. Chem. Commun. 1995,295.
[7]
(a) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123,5374.
[7]
(b) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49,7346.
[7]
(c) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., nt. Ed. 2013, 52,6962.
[7]
(d) Chu, X.-Q.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50,9718.
[7]
(e) Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2014, 50,7642.
[7]
(f) Li, Y.; Liu, B.; Li, H. B.; Wang, Q.; Li, J. H. Chem. Commun. 2015, 51,1024.
[7]
(g) Li, L.; Gu, Q. S.; Wang, N.; Song, P.; Li, Z. L.; Li, X. H.; Wang, F. L.; Liu, X. Y. Chem. Commun. 2017, 53,4038.
[7]
(h) Yang, S.; Wu, X.; Wu, S.; Zhu, C. Org. Lett. 2019, 21,4837.
[8]
(a) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139,1388.
[8]
(b) Gu, L. J.; Gao, Y.; Ai, X. H.; Jin, C.; He, Y. H.; Li, G. P.; Yuan, M. L. Chem. Commun. 2017, 53,12946.
[8]
(c) He, Y.; Wang, Y.; Gao, J.; Zeng, L.; Li, S.; Wang, W.; Zheng, X.; Zhang, S.; Gu, L.; Li, G. Chem. Commun. 2018, 54,7499.
[8]
(d) Zhang, W.; Zou, Z.; Wang, Y.; Wang, Y.; Liang, Y.; Wu, Z.; Zheng, Y.; Pan, Y. Angew. Chem., nt. Ed. 2019, 58,624.
[9]
(a) Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360,744.
[9]
(b) Chen, D.; Ji, M.; Yao, Y.; Zhu, C. Acta Chim. Sinica 2018, 76,951.
[9]
(c) Wang, N.; Wang, J.; Guo, Y. L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H. X.; Guo, Z.; Li, Z. L.; Liu, X.-Y. Chem. Commun. 2018, 54,8885.
[10]
(a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., nt. Ed. 2013, 52,6962.
[10]
(b) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49,7346.
[10]
(c) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C. J. Am. Chem. Soc. 2017, 139,1388.
[11]
(a) Li, Z. L.; Li, X. H.; Wang, N.; Yang, N. Y.; Liu, X.-Y. Angew. Chem., nt. Ed. 2016, 55,15100.
[11]
(b) Yu, J. J.; Wang, D. P.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360,744.
[12]
(a) Tang, X.; Studer, A. Angew. Chem., nt. Ed. 2018, 57,814.
[12]
(b) Wang, X.; Liu, J.; Yu, Z.; Guo, M.; Tang, X.; Wang, G. Org. Lett. 2018, 20,6516.
[13]
(a) Wu, Z.; Ren, R.; Zhu, C. Angew. Chem., nt. Ed. 2016, 55,10821.
[13]
(b) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C. Adv. Synth. Catal. 2017, 359,1959.
[13]
(c) Ren, R.; Wu, Z.; Huan, L.; Zhu, C. Adv. Synth. Catal. 2017, 359,3052.
[13]
(d) Wang, N.; Li, L.; Li, Z. L.; Yang, N. Y.; Guo, Z.; Zhang, H. X.; Liu, X. Y. Org. Lett. 2016, 18,6026.
[14]
(a) Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Angew. Chem., nt. Ed. 2017, 56,4545.
[14]
(b) Tang, X.; Studer, A. Chem. Sci. 2017, 8,6888.
[15]
(a) Yu, J. J.; Wu, Z.; Zhu, C. Angew. Chem., nt. Ed. 2018, 57,17156.
[15]
(b) Wang, M.; Zhang, H. H.; Liu, J. G.; Wu, X. X.; Zhu, C. Angew. Chem., nt. Ed. 2019, 58,17646.
[15]
(c) Niu, T.; Liu, J. G.; Wu, X. X.; Zhu, C. Chin. J. Chem. 2020, 38,803.
[16]
(a) Zhao, Q.; Ji, X. S.; Gao, Y. Y.; Hao, W. J.; Zhang, K. Y.; Tu, S. J.; Jiang, B. Org. Lett. 2018, 20,3596.
[16]
(b) Li, M.; Zhu, X.-Y.; Qiu, Y.-F.; Han, Y.-P.; Xia, Y.; Wang, C.-T.; Li, X.-S.; Wei, W.-X.; Liang, Y.-M. Adv. Synth. Catal. 2019, 361,2945.
[16]
(c) Jin, S.; Sun, S.; Yu, J.-T.; Cheng, J. J. Org. Chem. 2019, 84,11177.
[16]
(d) Zhang, P.; Shi, H. N.; Zhang, T. S.; Cai, P. J.; Jiang, B.; Tu, S. J. Chin. J. Org. Chem. 2020, 40,423(in Chinese).
[16]
(张萍, 石浩楠, 张天舒, 蔡佩君, 姜波, 屠树江, 有机化学, 2020, 40,423.)
[16]
(e) Zhao, Q.; Tu, S. J.; Jiang, B. Acta Chim. Sinica 2019, 77,927(in Chinese).
[16]
(赵琦, 屠树江, 姜波, 化学学报, 2019, 77,927.)
文章导航

/