研究论文

4-羟基香豆素在四氢喹啉及二香豆素内盐合成中的应用

  • 杨晓宇 ,
  • 柳建林 ,
  • 胡方芝 ,
  • 孙红梅 ,
  • 王亮 ,
  • 李帅帅
展开
  • a 青岛农业大学化学与药学院 山东青岛 266109
    b 青岛科技大学化学与分子工程学院 山东青岛 266042
† 共同第一作者(These authors contributed equally to this work).

收稿日期: 2021-01-16

  修回日期: 2021-03-23

  网络出版日期: 2021-04-12

基金资助

国家自然科学基金(21978144); 国家自然科学基金(21702117); 国家自然科学基金(21776148); 山东省重点研发计划(2018GSF118224); 山东省重点研发计划(2019GSF108020); 山东省重点研发计划(2019RKB01027); 山东省青创科技计划(2019KJM002); 青岛科技大学开放基金(QUSTHX201916); 青岛科技大学开放基金(QUSTHX202004)

Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives

  • Xiaoyu Yang ,
  • Jianlin Liu ,
  • Fangzhi Hu ,
  • Hongmei Sun ,
  • Liang Wang ,
  • Shuai-Shuai Li
Expand
  • a College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109
    b College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042
* Corresponding authors. E-mail: ;

Received date: 2021-01-16

  Revised date: 2021-03-23

  Online published: 2021-04-12

Supported by

National Natural Science Foundation of China(21978144); National Natural Science Foundation of China(21702117); National Natural Science Foundation of China(21776148); Key Research & Development Program of Shandong Province(2018GSF118224); Key Research & Development Program of Shandong Province(2019GSF108020); Key Research & Development Program of Shandong Province(2019RKB01027); Support Plan on Science and Technology for Youth Innovation of Universities in Shandong Province(2019KJM002); Opening Funding of Qingdao University of Science & Technology(QUSTHX201916); Opening Funding of Qingdao University of Science & Technology(QUSTHX202004)

摘要

以4-羟基香豆素和邻胺基苯甲醛为原料, 高效合成了具有药物活性的3-位邻羟基苯甲酰基单取代的四氢喹啉衍生物. 在乙醇溶剂中, 反应经过克脑文格尔缩合/[1,5]-氢迁移/环化/水解/脱羧这五个串联过程进行. 另外, 还实现了底物控制的多样性合成, 在无催化剂、无溶剂、室温条件下制备了一系列二香豆素内盐.

本文引用格式

杨晓宇 , 柳建林 , 胡方芝 , 孙红梅 , 王亮 , 李帅帅 . 4-羟基香豆素在四氢喹啉及二香豆素内盐合成中的应用[J]. 有机化学, 2021 , 41(7) : 2788 -2799 . DOI: 10.6023/cjoc202101024

Abstract

The pharmaceutically significant 3-mono-substituted tetrahydroquinoline derivatives carryingortho-hydroxy- benzoyl moiety are constructed via EtOH mediated cascade Knoevenagel condensation/[1,5]-hydride transfer/cyclization/hydrolysis/decarboxylation from 4-hydroxycoumarins ando-aminobenzaldehydes. In addition, the substrate-controlled diverse syntheses also could be achieved, and a variety of the zwitterionic biscoumarin derivatives are facilely provided under catalyst- and solvent-free conditions at room temperature.

参考文献

[1]
(a) Takemura, T.; Kamo, T.; Sakuno, E.; Hiradate, S.; Fujii, Y. J. Trop. For. Sci. 2013, 25,268.
[1]
(b) Mangasuli,S. N.; Hosamani,K. M.; Devarajegowda,H. C.; Kurjogi,M. M.; Joshi,S. D. Eur. J. Med. Chem. 2018, 146,747.
[1]
(c) Keri,R. S.; Sasidhar,B. S.; Nagaraja,B. M.; Santos,M. A. Eur. J. Med. Chem. 2015, 100,257.
[1]
(d) Amin,K. M.; Eissa,A. A.M.; Abou-Seri,S. M.; Awadallah,F. M.; Hassan,G. S. Eur. J. Med. Chem. 2013, 60,187.
[1]
(e) Paul, K.; Bindal, S.; Luxami, V. Bioorg. Med. Chem. Lett. 2013, 23,3667.
[1]
(f) Shi, L.; Li, Z.; Cui, X.; Zhu, T.; Pang, X.; Li, L.; Luo, D.; Liu, F.; Zhao, B.; Long, Y.; Zhang, S. Chin. J. Org. Chem. 2020, 40,1598 (in Chinese).
[1]
( 时蕾, 李子秋, 崔鑫鑫, 朱挺, 庞晓静, 李龙辉, 罗德福, 刘方芳, 赵冰玉, 龙跃, 张赛扬, 有机化学, 2020, 40,1598.)
[2]
For selected recent examples on 4-hydroxycoumarin as synthon, see: (a) Miao, M.; Luo, Y.; Li, H.; Xu, X.; Chen, Z.; Xu, J.; Ren,, H. J. Org. Chem. 2016, 81,5228.
[2]
(b) Chen, Y.; Wang, Y.; Zhong, R.; Li, J. J. Org. Chem. 2020, 85,10638.
[2]
(c) Mukherjee, S.; Pramanik, A. ACS Sustainable Chem. Eng. 2020, 8,403.
[2]
(d) Xu, R.; Li, K.; Wang, J.; Lu, J.; Pan, L.; Zeng, X.; Zhong, G. Chem. Commun. 2020, 56,8404.
[2]
(e) Sharma, K.; Neog, K.; Gogoi, P. Org. Lett. 2020, 22,73.
[2]
(f) Zhu, F.; Wang, Y.; He, M.; Yan, Z.; Lin, S. Chin. J. Org. Chem. 2019, 39,1175 (in Chinese).
[2]
( 朱福元, 王彦梅, 何明闯, 严兆华, 林森, 有机化学, 2019, 39,1175.)
[2]
(g) Rezaei, R.; Moezzi, F.; Doroodmand,M. M. Chin. Chem. Lett. 2014, 25,183.
[2]
(h) Chen, Z.; Bi, J.; Su, W. Chin. J. Chem. 2013, 31,507.
[2]
(i) Hamid Reza, S.; Moones, H. Chin. J. Chem. 2009, 27,1795.
[3]
(a) Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.; Caignard,D. -H.; Boutin,J. A.; Delagrange, P.; Lucini, V.; Scaglione, F.; Lodola, A.; Zanardi, F.; Pala, D.; Mor, M.; Rivara, S. J. Med. Chem. 2015, 58,7512.
[3]
(b) Ruble,J. C.; Hurd,A. R.; Johnson,T. A.; Sherry,D. A.; Barbachyn,M. R.; Toogood,P. L.; Bundy,G. L.; Graber,D. R.; Kamilar,G. M. J. Am. Chem. Soc. 2009, 131,3991.
[3]
(c) Taylor,S. N.; Marrazzo, J.; Batteiger,B. E.; Hook,E. W.; Seña,A. C.; Long, J.; Wierzbicki,M. R.; Kwak, H.; Johnson,S. M.; Lawrence, K.; Mueller, J. N. Engl. J. Med. 2018, 379,1835.
[3]
(d) Yu, L.; Ding, Q.; Song, C.; Chang, J. Chin. J. Org. Chem. 2021, 41,2507 (in Chinese).
[3]
( 余璐璐, 丁群山, 宋传君, 常俊标, 有机化学, 2021, 41,2507.)
[4]
For reviews on tetrahydroquinolines, see: (a) Sridharan, V.; Suryavanshi, P.; Menendez,,J. C. Chem. Rev. 2011, 111,7157.
[4]
(b) Muthukrishnan, I.; Sridharan, V.; Menendez,J. C. Chem. Rev. 2019, 119,5057.
[4]
For representative examples on tetrahydroquinolines, see: (c) Jadhav,A. M.; Pagar,V. V.; Liu,R. -S. Angew. Chem.,Int. Ed. 2012, 51,11809.
[4]
(d) Zhang, X.; Han, X.; Lu, X. Org. Lett. 2015, 17,3910.
[4]
(e) Leth,L. A.; Glaus, F.; Meazza, M.; Fu, L.; Thøgersen,M. K.; Bitsch,E. A.; Jørgensen,K. A. Angew. Chem.,Int. Ed. 2016, 55,15272.
[4]
(f) Bianchini, G.; Ribelles, P.; Becerra, D.; Ramos,M. T.; Menendez,J. C. Org. Chem. Front. 2016, 3,412.
[4]
(g) Xu,G. -Q.; Li,C. -G.; Liu,M. -Q.; Cao, J.; Luo,Y. -C.; Xu,P. -F. Chem. Commun. 2016, 52,1190.
[4]
(h) Zhang, Z.; Song, X.; Li, G.; Li, X.; Zheng, D.; Zhao, X.; Miao, H.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2021, 32,1423.
[4]
(i) Qian,L. F.; Zhou,Y. H.; Zhang, W. Chin. Chem. Lett. 2009, 20,805.
[4]
(j) Zhang, Z.; Zhang, Q.; Yan, Z.; Liu, Q. J. Org. Chem. 2007, 72,9808.
[5]
For reviews on hydride transfer reactions, see: (a) Tobisu, M.; Chatani,, N. Angew. Chem.,Int. Ed. 2006, 45,1683.
[5]
(b) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19,13274.
[5]
(c) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356,1137.
[5]
(d) Pan,S. C. Beilstein J. Org. Chem. 2012, 8,1374.
[5]
(e) Haibach,M. C.; Seidel, D. Angew. Chem.,Int. Ed. 2014, 53,5010.
[5]
(f) Kwon,S. J.; Kim,D. Y. Chem. Rec. 2016, 16,1191.
[5]
(g) Xiao, M.; Zhu, S.; Shen, Y.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2018, 38,328 (in Chinese).
[5]
肖明艳, 朱帅, 沈耀滨, 王亮, 肖建, 有机化学, 2018, 38,328.).
[5]
Other representative works on redox-neutral reactions, see:.
[5]
(g) Yang, L.; Wei, L.; Wan,J. -P. Chem. Commun. 2018, 54,7475.
[5]
(h) Yang, L.; Wan,J. -P. Green Chem. 2020, 22,3074.
[5]
(i) Huang, H.; Deng, K.; Deng,G. -J. Green Chem. 2020, 22,8243.
[5]
(j) Xiao, K.; Huang, Y.; Huang, P. Acta Chim. Sinica 2012, 70,1917.
[5]
(k) G. H; Huang,P. -Q. Chin. J. Chem. 2019, 37,811.
[6]
For selected examples on electron-withdrawing groups substituted alkenes as hydride acceptors, see: (a) Mahoney,S. J.; Moon,D. T.; Hollinger, J.; Fillion,, E. Tetrahedron Lett. 2009, 50,4706.
[6]
(b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12,1732.
[6]
(c) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133,2424.
[6]
(d) Jeong,H. I.; Youn,T. H.; Kim,D. Y. Bull. Korean Chem. Soc. 2017, 38,421.
[6]
(e) Briones,J. F.; Basarab,G. S. Chem. Commun. 2016, 52,8541.
[6]
(f) Yoshida, T.; Mori, K. Chem. Commun. 2017, 53,4319.
[6]
(g) Yamazaki, S.; Naito, T.; Tatsumi, T.; Kakiuchi, K. ChemistrySelect 2018, 3,4505.
[7]
Representative one-pot reactions for construction of tetrahydroquinoline skeletons, see: (a) Wang,P. -F.; Jiang,C. -H.; Wen, X.; Xu,Q. -L.; Sun,, H. J. Org. Chem. 2015, 80,1155.
[7]
(b) Bai, G.; Dong, F.; Xu, L.; Liu, Y.; Wang, L.; Li,S. -S. Org. Lett. 2019, 21,6225.
[7]
(c) Chen, C.; Xu, L.; Wang, L.; Li,S. -S. Org. Biomol. Chem. 2018, 16,7109.
[7]
(d) Li,S. -S.; Lv, X.; Ren, D.; Shao,C. -L.; Liu, Q.; Xiao, J. Chem. Sci. 2018, 9,8253.
[7]
(e) Yang, X.; Hu, F.; Wang, L.; Xu, L.; Li,S. -S. Org. Biomol. Chem. 2020, 18,4267.
[7]
(f) Shen,Y. -B.; Wang,L. -X.; Sun,Y. -M.; Dong,F. -Y.; Yu, L.; Liu, Q.; Xiao, J. J. Org. Chem. 2020, 85,1915.
[7]
(g) Zhu, S.; Chen, C.; Xiao, M.; Yu, L.; Wang, L.; Xiao, J. Green Chem. 2017, 19,5653.
[7]
(h) Liu, S.; Wang, H.; Wang, B. Org. Biomol. Chem. 2020, 18,8839.
[8]
(a) Li,S. -S.; Zhu, S.; Chen, C.; Duan, K.; Liu, Q.; Xiao, J. Org. Lett. 2019, 21,1058.
[8]
(b) Li,S. -S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J. Org. Lett. 2018, 20,138.
[8]
(c) Zhu, S.; Chen, C.; Duan, K.; Sun,Y. -M.; Li,S. -S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84,8440.
[8]
(d) Lü, X.; Hu, F.; Duan, K.; Li,S. -S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84,1833.
[8]
(e) Shi, H.; Xu, L.; Ren, D.; Wang, L.; Guo, W.; Li,S. -S. Org. Biomol. Chem. 2020, 18,4267.
[8]
(f) Duan, K.; Shi, H.; Wang,L. -X.; Li,S. -S.; Xu L.; Xiao, J. Org. Chem. Front. 2020, 7,2511.
[8]
(g) Yuan, K.; Dong, F.; Yin, X.; Li,S. -S.; Wang, L.; Xu, L. Org. Chem. Front. 2020, 7,3868.
[8]
(h) Xing, Y.; Dong, F.; Yin, X.; Wang, L.; Li,S. -S. Asian J. Org. Chem. 2020, 9,1787.
[8]
(i) Yang, X.; Wang, L.; Hu, F.; Xu, L.; Li, S.; Li,S. -S. Org. Lett. 2021, 23,358.
[8]
(j) Guo, M.; Dong, F.; Yin, X.; Wang, L.; Li,S. -S. Org. Chem. Front. 2021, 8,2224.
[9]
(a) Chauncey,M. A.; Grundon,M. F.; Rutherford,M. J. J. Chem. Soc.,Chem. Commun. 1988, 0,527.
[9]
(b) Zhang, K.; Han, H.; Wang, L.; Zhang, Z.; Wang, Q.; Zhang, W.; Bu, Z. Chem. Commun. 2019, 55,13681.
[10]
(a) Musa,M. A.; Cooperwood,J. S.; Khan,M. O.F. Curr. Med. Chem. 2008, 15,2664.
[10]
(b) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke,S. L.; Lee,K. H. Med. Res. Rev. 2003, 23,322.
[10]
(c) Anand, P.; Singh, B.; Singh, N. Bioorg. Med. Chem. 2012, 20,1175.
[10]
(d) Saeed, A.; Haroon, M.; Muhammad, F.; Larik,F. A.; Hesham,E. S.; Channar,P. A. J. Organomet. Chem. 2017, 834,88.
[10]
(e) Khan,K. M.; Iqbal, S.; Lodhi,M. A.; Maharvi,G. M.; Ullah, Z.; Choudhary,M. I.; Rahman, A.; Perveen, S. Bioorg. Med. Chem. 2004, 12,1963.
[11]
(a) Bavandia, H.; Habibia, Z.; Yousefi, M. Bioorg. Chem. 2020, 103,104139.
[11]
(b) Zeynizadeh, B.; Gilanizadeh, M. New J. Chem. 2019, 43,18794.
[11]
(c) Mathavan, S.; Kannan, K.; Yamajala,R. B.R.D. Org. Biomol. Chem. 2019, 17,9620.
[11]
(d) Yang, C.; Su,W. -Q.; Xu,D. -Z. RSC Adv. 2016, 6,99656.
文章导航

/