研究论文

铁催化1,3-共轭烯烃的Heck型脱羧烷基化反应

  • 王凯凯 ,
  • 陈绍维 ,
  • 李亚军 ,
  • 李达谅 ,
  • 鲍红丽
展开
  • a 福建师范大学南方生物医学研究中心&化学与材料学院 福州 350007
    b 中国科学院福建物质结构研究所 煤制乙二醇重点实验室 福州 350002

收稿日期: 2021-03-18

  修回日期: 2021-04-15

  网络出版日期: 2021-04-29

基金资助

国家自然科学基金(21871258); 国家自然科学基金(21922112); 国家自然科学基金(22001251); 福建师范大学校创新团队(IRTL1703)

Iron-Catalyzed Decarboxylative Heck-Type Alkylation of Conjugate 1,3-Dienes

  • Kaikai Wang ,
  • Shaowei Chen ,
  • Yajun Li ,
  • Daliang Li ,
  • Hongli Bao
Expand
  • a Biomedical Research Center of South China & College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007
    b Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
* Corresponding authors. E-mail: ;

Received date: 2021-03-18

  Revised date: 2021-04-15

  Online published: 2021-04-29

Supported by

National Natural Science Foundation of China(21871258); National Natural Science Foundation of China(21922112); National Natural Science Foundation of China(22001251); Innovative Research Teams Program of Fujian Normal University(IRTL1703)

摘要

报道了铁催化的烷基过氧酰或者叔丁基过氧酯对1,3-共轭烯烃的Heck型脱羧烷基化反应. 这个方法提供了一个有效的对1,3-共轭烯烃进行Heck型烷基化的途径, 不但收率高, 而且有些情况下具有很高的区位选择性. 此方法也可以用来对生物活性分子进行后期Heck型烷基化修饰.

本文引用格式

王凯凯 , 陈绍维 , 李亚军 , 李达谅 , 鲍红丽 . 铁催化1,3-共轭烯烃的Heck型脱羧烷基化反应[J]. 有机化学, 2021 , 41(7) : 2707 -2714 . DOI: 10.6023/cjoc202103029

Abstract

An iron-catalyzed decarboxylative Heck-type alkylation of conjugate 1,3-dienes with alkyl diacyl peroxides andt-butyl peresters is reported. This method offers an efficient approach to alkylation of 1,3-dienes with good yields, and in some cases with high selectivities. Late-stage alkylation of bioactive compounds was also found to be effective.

参考文献

[1]
(a) Thirsk, C.; Whiting, A. J. Chem. Soc., erkin Trans. 2002,999.
[1]
(b) Madden,K. S.; Mosa,F. A.; Whiting, A. Org. Biomol. Chem. 2014, 12,7877.
[1]
(c) Schoffmann, A.; Wimmer, L.; Goldmann, D.; Khom, S.; Hintersteiner, J.; Baburin, I.; Schwarz, T.; Hintersteininger, M.; Pakfeifer, P.; Oufir, M.; Hamburger, M.; Erker, T.; Ecker,G. F.; Mihovilovic,M. D.; Hering, S. J. Med. Chem. 2014, 57,5602.
[1]
(d) Mevers, E.; Sauri, J.; Liu, Y.; Moser, A.; Ramadhar,T. R.; Varlan, M.; Williamson,R. T.; Martin,G. E.; Clardy, J. J. Am. Chem. Soc. 2016, 138,12324.
[1]
(e) Soengas,R. G.; Rodriguez-Solla, H. Molecules 2021, 26,249.
[2]
(a) Backvall,J. E.; Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 1998, 98,2291.
[2]
(b) Arndt, S.; Beckerle, K.; Zeimentz,P. M.; Spaniol,T. P.; Okuda, J. Angew. Chem. Int. Ed. 2005, 44,7473.
[2]
(c) Sardini,S. R.; Brown,M. K. J. Am. Chem. Soc. 2017, 139,9823.
[3]
(a) Maryanoff,B. E.; Reitz,A. B. Chem. Rev. 2002, 89,863.
[3]
(b) Byrne,P. A.; Gilheany,D. G. Chem. Soc. Rev. 2013, 42,6670.
[3]
(c) Lao, Z.; Toy,P. H. Beilstein J. Org. Chem. 2016, 12,2577.
[4]
(a) Denmark,S. E.; Choi,J. Y. J. Am. Chem. Soc. 1999, 121,5821.
[4]
(b) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124,8001.
[4]
(c) Molander,G. A.; Felix,L. A. J. Org. Chem. 2005, 70,3950.
[4]
(d) Zheng, C.; Wang, D.; Stahl,S. S. J. Am. Chem. Soc. 2012, 134,16496.
[4]
(e) Delcamp,J. H.; Gormisky,P. E.; White,M. C. J. Am. Chem. Soc. 2013, 135,8460.
[4]
(f) Madden,K. S.; David, S.; Knowles,J. P.; Whiting, A. Chem. Commun. 2015, 51,11409.
[4]
(g) Nguyen,V. T.; Dang,H. T.; Pham,H. H.; Nguyen,V. D.; Flores-Hansen, C.; Arman,H. D.; Larionov,O. V. J. Am. Chem. Soc. 2018, 140,8434.
[5]
(a) Bao, H.; Li, Y.; Ge, L.; Muhammad, M. Synthesis 2017, 49,5263.
[5]
(b) Jian, W.; Ge, L.; Jiao, Y.; Qian, B.; Bao, H. Angew. Chem. Int. Ed. 2017, 56,3650.
[5]
(c) Qian, B.; Chen, S.; Wang, T.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2017, 139,13076.
[5]
(d) Ye, C.; Li, Y.; Bao, H. Adv. Synth. Catal. 2017, 359,3720.
[5]
(e) Yu, F.; Wang, T.; Zhou, H.; Li, Y.; Zhang, X.; Bao, H. Org. Lett. 2017, 19,6538.
[5]
(f) Zhu, N.; Zhao, J.; Bao, H. Chem. Sci. 2017, 8,2081.
[5]
(g) Deng, W.; Feng, W.; Li, Y.; Bao, H. Org. Lett. 2018, 20,4245.
[5]
(h) Ge, L.; Jian, W.; Zhou, H.; Chen, S.; Ye, C.; Yu, F.; Qian, B.; Li, Y.; Bao, H. Chem. Asian. J. 2018, 13,2522.
[5]
(i) Deng, W.; Ye, C.; Li, Y.; Li, D.; Bao, H. Org. Lett. 2019, 21,261.
[5]
(j) Ye, C.; Li, Y.; Zhu, X.; Hu, S.; Yuan, D.; Bao, H. Chem. Sci. 2019, 10,3632.
[5]
(k) Zhu, X.; Deng, W.; Chiou,M. F.; Ye, C.; Jian, W.; Zeng, Y.; Jiao, Y.; Ge, L.; Li, Y.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2019, 141,548.
[5]
(l) Wei, R.; Xiong, H.; Ye, C.; Li, Y.; Bao, H. Org. Lett. 2020, 22,3195.
[5]
(m) Zeng, Y.; Chiou,M. F.; Zhu, X.; Cao, J.; Lv, D.; Jian, W.; Li, Y.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2020, 142,18014.
[6]
(a) Rueda-Becerril, M.; Sazepin,C. C.; Leung,J. C.; Okbinoglu, T.; Kennepohl, P.; Paquin,J. F.; Sammis,G. M. J. Am. Chem. Soc. 2012, 134,4026.
[6]
(b) Dirocco,D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway,D. V.; Tudge, M. Angew. Chem. Int. Ed. 2014, 53,4802.
[6]
(c) Pan, C.; Zhang, H.; Han, J.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51,3786.
[6]
(d) Pan, C.; Fu, Y.; Ni, Q.; Yu,J. -T. J. Org. Chem. 2017, 82,5005.
[6]
(e) Cui, Z.; Du,D. M. J. Org. Chem. 2018, 83,5149.
[6]
(f) Jin, C.; Zhang, X.; Sun, B.; Yan, Z.; Xu, T. Synlett 2019, 30,1585.
[6]
(g) Tang, B.; Lv, F.; Chen, K.; Jiao, L.; Liu, Q.; Wang, H.; Hao, E. Chem. Commun. 2019, 55,4691.
[6]
(h) Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Chem. Commun. 2019, 55,14813.
[6]
(i) Gomez-Palomino, A.; Perez-Palau, M.; Romea, P.; Urpi, F.; Del Olmo, M.; Hesse, T.; Fleckenstein, S.; Gomez-Bengoa, E.; Sotorrios, L.; Font-Bardia, M. Org. Lett. 2020, 22,199.
[6]
(j) Lv, Y.; Bao, P.; Yue, H.; Wei, W. Tetrahedron Lett. 2020, 61,152559.
[6]
(k) Rajamanickam, S.; Sah, C.; Mir,B. A.; Ghosh, S.; Sethi, G.; Yadav, V.; Venkataramani, S.; Patel,B. K. J. Org. Chem. 2020, 85,2118.
[6]
(l) Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Org. Lett. 2020, 22,5005.
[6]
(m) Xu, J.; Zhang, H.; Zhao, J.; Ni, Z.; Zhang, P.; Shi,B. -F.; Li, W. Org. Chem. Front. 2020, 7,4031.
[6]
(n) Tang,Z. -L.; Ouyang,X. -H.; Song,R. -J.; Li,J. -H. Org. Lett. 2021, 23,1000.
[7]
Li, Y.; Han, Y.; Xiong, H.; Zhu, N.; Qian, B.; Ye, C.; Kantchev,E. A.; Bao, H. Org. Lett. 2016, 18,392.
[8]
Qian, B.; Xiong, H.; Zhu, N.; Ye, C.; Jian, W.; Bao, H. Tetrahedron Lett. 2016, 57,3400.
[9]
(a) Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124,6514.
[9]
(b) Firmansjah, L.; Fu,G. C. J. Am. Chem. Soc. 2007, 129,11340.
[9]
(c) Zhang, Y.; Feng, J.; Li,C. J. J. Am. Chem. Soc. 2008, 130,2900.
[9]
(d) Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A. Angew. Chem. Int. Ed. 2012, 51,3638.
[9]
(e) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc. 2013, 135,16372.
[9]
(f) Zhou, H.; Ge, L.; Song, J.; Jian, W.; Li, Y.; Li, C.; Bao, H. iScience 2018, 3,255.
[9]
(g) Xiong, H.; Li, Y.; Qian, B.; Wei, R.; Van der Eycken,E. V.; Bao, H. Org. Lett. 2019, 21,776.
[10]
(a) Zhang, H.; Wu, X.; Wei, Y.; Zhu, C. Org. Lett. 2019, 21,7568.
[10]
(b) Liu, J.; Wu, S.; Yu, J.; Lu, C.; Wu, Z.; Wu, X.; Xue,X. S.; Zhu, C. Angew. Chem. Int. Ed. 2020, 59,8195.
[11]
(a) Jiao, Y.; Chiou,M. -F.; Li, Y.; Bao, H. ACS Catal. 2019, 9,5191.
[11]
(b) Xiong, H.; Ramkumar, N.; Chiou,M. F.; Jian, W.; Li, Y.; Su,J. H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10,122.
[11]
(c) Taj Muhammad, M.; Jiao, Y.; Ye, C.; Chiou, M.F.; Israr, M.; Zhu, X.; Li, Y.; Wen, Z.; Studer, A.; Bao, H. Nat. Commun. 2020, 11,416.
[12]
Zong, Z.; Wang, W.; Bai, X.; Xi, H.; Li, Z. Asian J. Org. Chem. 2015, 4,622.
[13]
Cheng, C.; Simmons,E. M.; Hartwig,J. F. Angew. Chem. Int. Ed. 2013, 52,8984.
文章导航

/