有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2707-2714.DOI: 10.6023/cjoc202103029 上一篇 下一篇
所属专题: 热点论文虚拟合集
研究论文
王凯凯a, 陈绍维b, 李亚军b, 李达谅a,*(), 鲍红丽b,*()
收稿日期:
2021-03-18
修回日期:
2021-04-15
发布日期:
2021-04-29
通讯作者:
李达谅, 鲍红丽
基金资助:
Kaikai Wanga, Shaowei Chenb, Yajun Lib, Daliang Lia(), Hongli Baob()
Received:
2021-03-18
Revised:
2021-04-15
Published:
2021-04-29
Contact:
Daliang Li, Hongli Bao
Supported by:
文章分享
报道了铁催化的烷基过氧酰或者叔丁基过氧酯对1,3-共轭烯烃的Heck型脱羧烷基化反应. 这个方法提供了一个有效的对1,3-共轭烯烃进行Heck型烷基化的途径, 不但收率高, 而且有些情况下具有很高的区位选择性. 此方法也可以用来对生物活性分子进行后期Heck型烷基化修饰.
王凯凯, 陈绍维, 李亚军, 李达谅, 鲍红丽. 铁催化1,3-共轭烯烃的Heck型脱羧烷基化反应[J]. 有机化学, 2021, 41(7): 2707-2714.
Kaikai Wang, Shaowei Chen, Yajun Li, Daliang Li, Hongli Bao. Iron-Catalyzed Decarboxylative Heck-Type Alkylation of Conjugate 1,3-Dienes[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2707-2714.
Entry | Catalyst | Solvent | Temp/℃ | Yieldb/% |
---|---|---|---|---|
1 | Fe(OTs)3 | THF | 80 | 40 (2∶1) |
2 | Mn(OAc)2 | THF | 80 | Trace |
3 | MnBr2 | THF | 80 | Trace |
4 | MnCl2•4H2O | THF | 80 | Trace |
5 | Ni(acac)2 | THF | 80 | Trace |
6 | CoBr2 | THF | 80 | Trace |
7 | CuBr | THF | 80 | 4 |
8 | Fe(acac)3 | THF | 80 | 4 |
9 | FeCl2 | THF | 80 | 10 |
10 | Fe(OTf)3 | THF | 80 | 67 (2∶1) |
11 | Fe(OTf)3 | THF | 60 | 65 (2∶1) |
12 | Fe(OTf)3 | THF | 70 | 60 (2∶1) |
13 | Fe(OTf)3 | THF | 90 | 63 (2∶1) |
14 | Fe(OTf)3 | THF | 100 | 64 (2∶1) |
15 | Fe(OTf)3 | THF | 80 | 74 (2∶1)c |
Entry | Catalyst | Solvent | Temp/℃ | Yieldb/% |
---|---|---|---|---|
1 | Fe(OTs)3 | THF | 80 | 40 (2∶1) |
2 | Mn(OAc)2 | THF | 80 | Trace |
3 | MnBr2 | THF | 80 | Trace |
4 | MnCl2•4H2O | THF | 80 | Trace |
5 | Ni(acac)2 | THF | 80 | Trace |
6 | CoBr2 | THF | 80 | Trace |
7 | CuBr | THF | 80 | 4 |
8 | Fe(acac)3 | THF | 80 | 4 |
9 | FeCl2 | THF | 80 | 10 |
10 | Fe(OTf)3 | THF | 80 | 67 (2∶1) |
11 | Fe(OTf)3 | THF | 60 | 65 (2∶1) |
12 | Fe(OTf)3 | THF | 70 | 60 (2∶1) |
13 | Fe(OTf)3 | THF | 90 | 63 (2∶1) |
14 | Fe(OTf)3 | THF | 100 | 64 (2∶1) |
15 | Fe(OTf)3 | THF | 80 | 74 (2∶1)c |
[1] |
(a) Thirsk, C.; Whiting, A. J. Chem. Soc., erkin Trans. 2002,999.
|
(b) Madden,K. S.; Mosa,F. A.; Whiting, A. Org. Biomol. Chem. 2014, 12,7877.
doi: 10.1039/C4OB01337A |
|
(c) Schoffmann, A.; Wimmer, L.; Goldmann, D.; Khom, S.; Hintersteiner, J.; Baburin, I.; Schwarz, T.; Hintersteininger, M.; Pakfeifer, P.; Oufir, M.; Hamburger, M.; Erker, T.; Ecker,G. F.; Mihovilovic,M. D.; Hering, S. J. Med. Chem. 2014, 57,5602.
doi: 10.1021/jm5002277 |
|
(d) Mevers, E.; Sauri, J.; Liu, Y.; Moser, A.; Ramadhar,T. R.; Varlan, M.; Williamson,R. T.; Martin,G. E.; Clardy, J. J. Am. Chem. Soc. 2016, 138,12324.
doi: 10.1021/jacs.6b07588 |
|
(e) Soengas,R. G.; Rodriguez-Solla, H. Molecules 2021, 26,249.
doi: 10.3390/molecules26020249 |
|
[2] |
(a) Backvall,J. E.; Chinchilla, R.; Najera, C.; Yus, M. Chem. Rev. 1998, 98,2291.
doi: 10.1021/cr970326z |
(b) Arndt, S.; Beckerle, K.; Zeimentz,P. M.; Spaniol,T. P.; Okuda, J. Angew. Chem. Int. Ed. 2005, 44,7473.
doi: 10.1002/(ISSN)1521-3773 |
|
(c) Sardini,S. R.; Brown,M. K. J. Am. Chem. Soc. 2017, 139,9823.
doi: 10.1021/jacs.7b05477 |
|
[3] |
(a) Maryanoff,B. E.; Reitz,A. B. Chem. Rev. 2002, 89,863.
doi: 10.1021/cr00094a007 |
(b) Byrne,P. A.; Gilheany,D. G. Chem. Soc. Rev. 2013, 42,6670.
doi: 10.1039/c3cs60105f |
|
(c) Lao, Z.; Toy,P. H. Beilstein J. Org. Chem. 2016, 12,2577.
doi: 10.3762/bjoc.12.253 |
|
[4] |
(a) Denmark,S. E.; Choi,J. Y. J. Am. Chem. Soc. 1999, 121,5821.
doi: 10.1021/ja9908117 |
(b) Takagi, J.; Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Am. Chem. Soc. 2002, 124,8001.
doi: 10.1021/ja0202255 |
|
(c) Molander,G. A.; Felix,L. A. J. Org. Chem. 2005, 70,3950.
doi: 10.1021/jo050286w |
|
(d) Zheng, C.; Wang, D.; Stahl,S. S. J. Am. Chem. Soc. 2012, 134,16496.
doi: 10.1021/ja307371w |
|
(e) Delcamp,J. H.; Gormisky,P. E.; White,M. C. J. Am. Chem. Soc. 2013, 135,8460.
doi: 10.1021/ja402891m |
|
(f) Madden,K. S.; David, S.; Knowles,J. P.; Whiting, A. Chem. Commun. 2015, 51,11409.
doi: 10.1039/C5CC03273C |
|
(g) Nguyen,V. T.; Dang,H. T.; Pham,H. H.; Nguyen,V. D.; Flores-Hansen, C.; Arman,H. D.; Larionov,O. V. J. Am. Chem. Soc. 2018, 140,8434.
doi: 10.1021/jacs.8b05421 |
|
[5] |
(a) Bao, H.; Li, Y.; Ge, L.; Muhammad, M. Synthesis 2017, 49,5263.
doi: 10.1055/s-0036-1590935 |
(b) Jian, W.; Ge, L.; Jiao, Y.; Qian, B.; Bao, H. Angew. Chem. Int. Ed. 2017, 56,3650.
doi: 10.1002/anie.201612365 |
|
(c) Qian, B.; Chen, S.; Wang, T.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2017, 139,13076.
doi: 10.1021/jacs.7b06590 |
|
(d) Ye, C.; Li, Y.; Bao, H. Adv. Synth. Catal. 2017, 359,3720.
doi: 10.1002/adsc.v359.21 |
|
(e) Yu, F.; Wang, T.; Zhou, H.; Li, Y.; Zhang, X.; Bao, H. Org. Lett. 2017, 19,6538.
doi: 10.1021/acs.orglett.7b03244 |
|
(f) Zhu, N.; Zhao, J.; Bao, H. Chem. Sci. 2017, 8,2081.
doi: 10.1039/C6SC04274K |
|
(g) Deng, W.; Feng, W.; Li, Y.; Bao, H. Org. Lett. 2018, 20,4245.
doi: 10.1021/acs.orglett.8b01658 |
|
(h) Ge, L.; Jian, W.; Zhou, H.; Chen, S.; Ye, C.; Yu, F.; Qian, B.; Li, Y.; Bao, H. Chem. Asian. J. 2018, 13,2522.
doi: 10.1002/asia.201800534 |
|
(i) Deng, W.; Ye, C.; Li, Y.; Li, D.; Bao, H. Org. Lett. 2019, 21,261.
doi: 10.1021/acs.orglett.8b03689 |
|
(j) Ye, C.; Li, Y.; Zhu, X.; Hu, S.; Yuan, D.; Bao, H. Chem. Sci. 2019, 10,3632.
doi: 10.1039/C8SC05689G |
|
(k) Zhu, X.; Deng, W.; Chiou,M. F.; Ye, C.; Jian, W.; Zeng, Y.; Jiao, Y.; Ge, L.; Li, Y.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2019, 141,548.
doi: 10.1021/jacs.8b11499 |
|
(l) Wei, R.; Xiong, H.; Ye, C.; Li, Y.; Bao, H. Org. Lett. 2020, 22,3195.
doi: 10.1021/acs.orglett.0c00969 |
|
(m) Zeng, Y.; Chiou,M. F.; Zhu, X.; Cao, J.; Lv, D.; Jian, W.; Li, Y.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2020, 142,18014.
doi: 10.1021/jacs.0c06177 |
|
[6] |
(a) Rueda-Becerril, M.; Sazepin,C. C.; Leung,J. C.; Okbinoglu, T.; Kennepohl, P.; Paquin,J. F.; Sammis,G. M. J. Am. Chem. Soc. 2012, 134,4026.
doi: 10.1021/ja211679v |
(b) Dirocco,D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway,D. V.; Tudge, M. Angew. Chem. Int. Ed. 2014, 53,4802.
doi: 10.1002/anie.201402023 |
|
(c) Pan, C.; Zhang, H.; Han, J.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51,3786.
doi: 10.1039/C4CC10015H |
|
(d) Pan, C.; Fu, Y.; Ni, Q.; Yu,J. -T. J. Org. Chem. 2017, 82,5005.
doi: 10.1021/acs.joc.7b00663 |
|
(e) Cui, Z.; Du,D. M. J. Org. Chem. 2018, 83,5149.
doi: 10.1021/acs.joc.8b00511 |
|
(f) Jin, C.; Zhang, X.; Sun, B.; Yan, Z.; Xu, T. Synlett 2019, 30,1585.
doi: 10.1055/s-0037-1611864 |
|
(g) Tang, B.; Lv, F.; Chen, K.; Jiao, L.; Liu, Q.; Wang, H.; Hao, E. Chem. Commun. 2019, 55,4691.
doi: 10.1039/C9CC01602C |
|
(h) Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Chem. Commun. 2019, 55,14813.
doi: 10.1039/C9CC08056B |
|
(i) Gomez-Palomino, A.; Perez-Palau, M.; Romea, P.; Urpi, F.; Del Olmo, M.; Hesse, T.; Fleckenstein, S.; Gomez-Bengoa, E.; Sotorrios, L.; Font-Bardia, M. Org. Lett. 2020, 22,199.
doi: 10.1021/acs.orglett.9b04148 |
|
(j) Lv, Y.; Bao, P.; Yue, H.; Wei, W. Tetrahedron Lett. 2020, 61,152559.
doi: 10.1016/j.tetlet.2020.152559 |
|
(k) Rajamanickam, S.; Sah, C.; Mir,B. A.; Ghosh, S.; Sethi, G.; Yadav, V.; Venkataramani, S.; Patel,B. K. J. Org. Chem. 2020, 85,2118.
doi: 10.1021/acs.joc.9b02875 |
|
(l) Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Org. Lett. 2020, 22,5005.
doi: 10.1021/acs.orglett.0c01574 |
|
(m) Xu, J.; Zhang, H.; Zhao, J.; Ni, Z.; Zhang, P.; Shi,B. -F.; Li, W. Org. Chem. Front. 2020, 7,4031.
doi: 10.1039/D0QO00872A |
|
(n) Tang,Z. -L.; Ouyang,X. -H.; Song,R. -J.; Li,J. -H. Org. Lett. 2021, 23,1000.
doi: 10.1021/acs.orglett.0c04203 |
|
[7] |
Li, Y.; Han, Y.; Xiong, H.; Zhu, N.; Qian, B.; Ye, C.; Kantchev,E. A.; Bao, H. Org. Lett. 2016, 18,392.
doi: 10.1021/acs.orglett.5b03399 |
[8] |
Qian, B.; Xiong, H.; Zhu, N.; Ye, C.; Jian, W.; Bao, H. Tetrahedron Lett. 2016, 57,3400.
doi: 10.1016/j.tetlet.2016.06.087 |
[9] |
(a) Ikeda, Y.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2002, 124,6514.
doi: 10.1021/ja026296l |
(b) Firmansjah, L.; Fu,G. C. J. Am. Chem. Soc. 2007, 129,11340.
doi: 10.1021/ja075245r |
|
(c) Zhang, Y.; Feng, J.; Li,C. J. J. Am. Chem. Soc. 2008, 130,2900.
doi: 10.1021/ja0775063 |
|
(d) Liu, C.; Tang, S.; Liu, D.; Yuan, J.; Zheng, L.; Meng, L.; Lei, A. Angew. Chem. Int. Ed. 2012, 51,3638.
doi: 10.1002/anie.v51.15 |
|
(e) Nishikata, T.; Noda, Y.; Fujimoto, R.; Sakashita, T. J. Am. Chem. Soc. 2013, 135,16372.
doi: 10.1021/ja409661n |
|
(f) Zhou, H.; Ge, L.; Song, J.; Jian, W.; Li, Y.; Li, C.; Bao, H. iScience 2018, 3,255.
doi: 10.1016/j.isci.2018.04.020 |
|
(g) Xiong, H.; Li, Y.; Qian, B.; Wei, R.; Van der Eycken,E. V.; Bao, H. Org. Lett. 2019, 21,776.
doi: 10.1021/acs.orglett.8b04024 |
|
[10] |
(a) Zhang, H.; Wu, X.; Wei, Y.; Zhu, C. Org. Lett. 2019, 21,7568.
doi: 10.1021/acs.orglett.9b02838 |
(b) Liu, J.; Wu, S.; Yu, J.; Lu, C.; Wu, Z.; Wu, X.; Xue,X. S.; Zhu, C. Angew. Chem. Int. Ed. 2020, 59,8195.
doi: 10.1002/anie.v59.21 |
|
[11] |
(a) Jiao, Y.; Chiou,M. -F.; Li, Y.; Bao, H. ACS Catal. 2019, 9,5191.
doi: 10.1021/acscatal.9b01060 |
(b) Xiong, H.; Ramkumar, N.; Chiou,M. F.; Jian, W.; Li, Y.; Su,J. H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10,122.
doi: 10.1038/s41467-018-07985-2 |
|
(c) Taj Muhammad, M.; Jiao, Y.; Ye, C.; Chiou, M.F.; Israr, M.; Zhu, X.; Li, Y.; Wen, Z.; Studer, A.; Bao, H. Nat. Commun. 2020, 11,416.
doi: 10.1038/s41467-019-14254-3 |
|
[12] |
Zong, Z.; Wang, W.; Bai, X.; Xi, H.; Li, Z. Asian J. Org. Chem. 2015, 4,622.
doi: 10.1002/ajoc.201500148 |
[13] |
Cheng, C.; Simmons,E. M.; Hartwig,J. F. Angew. Chem. Int. Ed. 2013, 52,8984.
doi: 10.1002/anie.201304084 |
[1] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[2] | 朱玉溪, 肖婷, 夏冬, 杨文超. 氟烷基羧酸的脱羧氟烷基化反应研究进展[J]. 有机化学, 2022, 42(12): 4067-4077. |
[3] | 朱庆, 夏春谷, 刘超. 铁催化酮羰基的硼化反应合成α-羟基硼酸酯[J]. 有机化学, 2021, 41(2): 661-668. |
[4] | 邬林洋, 钟大猷, 刘文博. 无配体参与的铁催化分子内C(sp3)—H键胺化合成咪唑啉酮[J]. 有机化学, 2021, 41(10): 4083-4087. |
[5] | 孙越, 关瑞, 刘兆洪, 王也铭. 铁、钴、镍催化烯烃的硼氢化反应研究进展[J]. 有机化学, 2020, 40(4): 899-912. |
[6] | 周明东, 覃丕涛, 经理珂, 孙京, 杜海武. 可见光诱导烷基羧酸及其衍生物的脱羧偶联反应研究进展[J]. 有机化学, 2020, 40(3): 598-613. |
[7] | 沈丽, 张洁, 谢建伟. Cu(Ⅱ)/Ag(I)催化芳香羧酸和邻氨基苯甲酰胺的选择性脱羧胺化反应[J]. 有机化学, 2019, 39(4): 1153-1159. |
[8] | 何泽瑜, 范敏, 徐佳能, 胡越, 王露, 吴旭东, 夏春谷, 刘超. 铁催化酮类化合物脱氧双硼化制备非末端偕二硼[J]. 有机化学, 2019, 39(12): 3438-3445. |
[9] | 谢庭辉, 蒋筱莹, 米治胜, 李雪, 徐小河, 白仁仁, 帅棋, 谢媛媛. 微波辅助下通过Fe/O2催化C-H键官能团化合成喹啉-2-甲醛类化合物[J]. 有机化学, 2019, 39(11): 3294-3298. |
[10] | 刘强, 王彬, 彭小水, 黄乃正. 格氏试剂参与的铁催化偶联反应中的添加物效应(英文)[J]. 有机化学, 2018, 38(1): 40-50. |
[11] | 施冬冬, 鲍汉扬, 徐峥, 刘运奎. 铁催化分子内sp2-C-H键的胺化/芳构化反应合成6-芳基菲啶[J]. 有机化学, 2017, 37(5): 1290-1294. |
[12] | 李娟华, 刘昆明, 段新方, 刘晋彪. 铁催化碳-碳偶联反应研究进展[J]. 有机化学, 2017, 37(2): 314-334. |
[13] | 端木丹丹, 梁柏健, 蒋其柏, 燕红. 钯催化苄基的C(sp3)—H键活化合成芳酸苄酯[J]. 有机化学, 2017, 37(10): 2669-2677. |
[14] | 贾婉, 赵立志, 魏恒旭, 朱林东, 傅磊, 陈蔚春. 铁催化二级氯代烷烃与炔基格氏试剂的交叉偶联反应[J]. 有机化学, 2016, 36(5): 1060-1064. |
[15] | 李志伟, 康绍英, 陈琳, 王宇, 李江胜. 钯催化合成氧化芪三酚的研究[J]. 有机化学, 2016, 36(5): 1143-1147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||