含三氟甲基吡啶结构的酰胺类衍生物的合成、表征及生物活性研究
收稿日期: 2021-01-26
修回日期: 2021-03-15
网络出版日期: 2021-05-25
基金资助
国家自然科学基金(21762012); 国家自然科学基金(32072445); 国家自然科学基金(21562012); 高等学校学科创新引智计划(111 Program, No. D20023); 贵州省科技技术基金([2017]1402); 及贵州省科技技术基金([2017]5788)
Synthesis, Characterization, and Biological Activity of Novel Amide Derivatives Containing Trifluoromethylpyridine Moieties
Received date: 2021-01-26
Revised date: 2021-03-15
Online published: 2021-05-25
Supported by
National Natural Science Foundation of China(21762012); National Natural Science Foundation of China(32072445); National Natural Science Foundation of China(21562012); Program of Introducing Talents to Chinese Universities(111 Program, No. D20023); Science & Technology Planning Project of Guizhou Province([2017]1402); Science & Technology Planning Project of Guizhou Province([2017]5788)
合成了一系列含三氟甲基吡啶结构的酰胺衍生物, 并测试了它们对水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae)、柑橘溃疡病菌(Xanthomonas axonopodis pv. citri)、烟草青枯病菌(Ralstonia solanacearum)的体外抑菌活性和对小菜蛾(Plutella xylostella)的杀虫活性. 结果表明, 部分化合物表现出优异的抑菌活性. 如2-((3-氯-5-(三氟甲基)吡啶-2-基)氧基)-N-(4-氟-2-甲基苯基)乙酰胺(6d)对水稻白叶枯病菌的EC50值为54.1 mg•L–1, 低于叶枯唑(EC50=59.6 mg•L–1)和噻菌酮(EC50=86.3 mg•L–1). 2-((3-氯-5-(三氟甲基)吡啶-2-基)氧基)-N-(4-氟-3(三氟甲基)苯基)乙酰胺(6h)和2-((3-氯- 5-(三氟甲基)吡啶-2-基)氧基)-N-(5,6-二氯吡啶-3-基)乙酰胺(6z)对柑橘溃疡病菌的抑制活性(EC50值为51.2和60.7 mg• L–1)均高于商品药剂叶枯唑(EC50=76.3 mg•L–1)和噻菌酮(EC50=101.7 mg•L–1). N-(2-氯-4-氟苯基)-2-((3-氯-5-(三氟甲基)吡啶-2-基)氧基)乙酰胺(6e)对烟草青枯病菌的抑菌活性略高于噻菌酮(EC50=79.0 mg•L–1), EC50值为74.9 mg•L–1. 此外, 化合物6e和2-((3-氯-5-(三氟甲基)吡啶-2-基)氧基)-N-(3-异丙基苯基)乙酰胺(6k)在浓度为500 mg•L–1时表现出中等程度的杀小菜蛾活性.
何凤 , 郭声鑫 , 代阿丽 , 张仁凤 , 吴剑 . 含三氟甲基吡啶结构的酰胺类衍生物的合成、表征及生物活性研究[J]. 有机化学, 2021 , 41(8) : 3303 -3311 . DOI: 10.6023/cjoc202101045
A series of novel trifluoromethylpyridine amide derivatives were synthesized and evaluated in vitro for their antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Ralstonia solanacearum, and insecticidal activity against Plutella xylostella. Some of the compounds showed promising antibacterial activity. In particular, the half maximal effective concentration (EC50) of 2-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-N-(4-fluoro- 2-methylphenyl)acetamide (6d) was 54.1 mg•L–1 against Xoo, which was slightly lower than the bismerthiazol (59.6 mg•L–1) and thiodiazole copper (86.3 mg•L–1) positive controls. 2-((3-Chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-N-(4-fluoro-3- (trifluoromethyl)phenyl)acetamide (6h) and 2-((3-chloro-5-(trifluoro-methyl)pyridin-2-yl)oxy)-N-(5,6-dichloropyridin-3-yl)- acetamide (6z) exhibited much higher activity against Xac (EC50 51.2 and 60.7 mg•L–1, respectively) than bismerthiazol (76.3 mg•L–1) and thiodiazole copper (101.7 mg•L–1). N-(2-Chloro-4-fluorophenyl)-2-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)- oxy)acetamide (6e) showed good bioactivity against R. solanacearum with an EC50 (74.9 mg•L–1) lower than thiodiazole copper (79.0 mg•L–1). 6e and 2-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-N-(3-isopropylphenyl)acetamide (6k) at 500 mg• L–1 exhibited moderate insecticidal activity against P. xylostella.
[1] | Oerke, E. C. J. Agric. Sci. 2006, 144, 31. |
[2] | Carvalho, F. P. Food Energy Secur. 2017, 6, 48. |
[3] | Xiang, Y. J.; Fu, H. J.; Li, Q. Y.; Li, X. Y.; N, J. Y.; Zhou, X. G.; Li, H. H.; Zhang, H. J. Mount. Agric. Biol. 2019, 38, 46. (in Chinese) |
[3] | (向运佳, 符慧娟, 李其勇, 李星月, 倪建英, 周小刚, 李洪浩, 张鸿, 山地农业生物学报, 2019, 38, 46.) |
[4] | Huang, N.; Angeles, E. R.; Domingo, J.; Magpantay, G.; Singh, S.; Zhang, G.; Kumaravadivel, N.; Bennett, J.; Khush, G. S. Theor. Appl. Genet. 1997, 95, 313. |
[5] | Srinivasan, B. Curr. Sci. 2005, 88, 1229. |
[6] | Li, P.; Tian, P. Y.; Chen, Y. Z.; Song, X. P.; Xue, W.; Jin, L. H.; Hu, D. Y.; Yang, S.; Song, B. Pest Manage. Sci. 2018, 74, 844. |
[7] | Maxwell, T. J.; Rajasekaran, P.; Das, S.; Campos, M. G. N.; Young, M.; Mendis, H. C.; Ozcan, A.; Gerberich, K. M.; Myers, M. E.; Graham, J. H.; Johnson, E. G.; Santra, S. J. Agric. Food Chem. 2019, 67, 12393. |
[8] | Gottwald, T. R.; Hughes, G.; Graham, J. H.; Sun, X. A.; Riley, T. Phytopathology 2001, 91, 30. |
[9] | Das, A. K. J. Appl. Hortic. 2003, 5, 52. |
[10] | Zhang, H.; Li, J. X.; Chen, S. Y.; Ding, H. X.; Yu, S.; Peng, L. J. J. Guizhou Univ. (Nat. Sci. Ed.) 2019, 36, 33. (in Chinese) |
[10] | (张恒, 李金星, 陈思颖, 丁海霞, 余水, 彭丽娟, 贵州大学学报 (自然科学版), 2019, 36, 33.) |
[11] | Kemmitt, G.; Sparks, T. C.; Hunter, J. E.; Lorsbach, B. A.; Hanger, G.; Gast, R. E.; Bryant, R. J. J. Agric. Food Chem. 2018, 66, 10337. |
[12] | Zhang, Y.; Pan, X. Y.; Duan, Y. B.; Zhu, X. F.; Ma, X. W.; Huang, T. T.; Gao, T. C.; Zhou, M. G. Australas. Plant Pathol. 2015, 44, 541. |
[13] | Behlau, F.; Canteros, B. I.; Jones, J. B.; Graham, J. H. Eur. J. Plant Pathol. 2012, 133, 949. |
[14] | Lang, J. M.; DuCharme, E.; Caballero, J. I.; Luna, E.; Hartman, T.; Ortiz-Castro, M.; Korus, K. A.; Rascoe, J.; Jackson-Ziems, T. A.; Broders, K.; Leach, J. E. Phytopathology 2017, 107, 1312. |
[15] | Burriss, A.; Edmunds, A. J. F.; Emery, D.; Hall, R. G.; Jacob, O.; Schaetzer, J. Pest Manage. Sci. 2018, 74, 1228. |
[16] | Cao, S.; Qian, X. H.; Song, G. H.; Huang, Q. C. J. Fluorine Chem. 2002, 117, 63. |
[17] | Wang, F.; Tang, P. P. Chin. J. Org. Chem. 2020, 40, 1805. (in Chinese) |
[17] | (王丰, 汤平平, 有机化学, 2002, 40, 1805.) |
[18] | Kirby, N. V.; Daeuble, J. F.; Davis, L. N.; Hannum, A. C.; Hellwig, K.; Lawler, L. K.; Parker, M. H.; Pieczko, M. E. Pest Manage. Sci. 2001, 57, 844. |
[19] | Yang, G. Z.; Zhu, J. K.; Yin, X. D.; Yan, Y. F.; Wang, Y. L.; Shang, X. F.; Liu, Y. Q.; Zhao, Z. M.; Peng, J. W.; Liu, H. J. Agric. Food Chem. 2019, 67, 11340. |
[20] | Hua, X. W.; Liu, N. N.; Fan, Z. J.; Zong, G. G.; Ma, Y.; Lei, K.; Yin, H.; Wang, G. Q. Chin. J. Org. Chem. 2019, 39, 2581. (in Chinese) |
[20] | (华学文, 刘南南, 范志金, 宗广宁, 马翼, 雷康, 殷昊, 王桂清, 有机化学, 2019, 39, 2581.) |
[21] | Wang, Y. Y.; Xu, F. Z.; Luo, D. X.; Guo, S. X.; He, F.; Dai, A. L.; Song, B. A.; Wu, J. J. Agric. Food Chem. 2019, 67, 13344. |
[22] | Nugent, B. M.; Buysse, A. M.; Loso, M. R.; Babcock, J. M.; Johnson, T. C.; Oliver, M. P.; Martin, T. P.; Ober, M. S.; Breaux, N.; Robinsona, A.; Adelfinskaya, Y. Pest Manage. Sci. 2015, 71, 928. |
[23] | Cao, S.; Qian, X. H.; Song, G. H.; Huang, Q. C. J. Fluorine Chem. 2002, 117, 63. |
[24] | Cai, M. Y.; Li, Z.; Fan, F.; Huang, Q. C.; Shao, X. S.; Song, G. H. J. Agric. Food Chem. 2010, 58, 2624. |
[25] | Chen, J. X.; Yi, C. F.; Wang, S. B.; Wu, S. K.; Li, S. Y.; Hu, D. Y.; Song, B. A. Bioorg. Med. Chem. Lett. 2019, 29, 1203. |
[26] | Dai, A. L., Guo, S. X.; Li, C. H.; Zhang, R. F.; Wu, J. Modern Agrochem. 2020, 19, 21. (in Chinese) |
[26] | (代阿丽, 郭声鑫, 李传会, 张仁凤, 吴剑, 现代农药, 2020, 19, 21.) |
[27] | Deng, H. X. Zhejiang Chem. Ind. 2011, 42, 1. (in Chinese) |
[27] | (邓红霞, 浙江化工, 2011, 42, 1.) |
[28] | Aggarwal, N.; Kumar, R.; Srivastva, C.; Dureja, P.; Khurana, J. M. J. Agric. Food Chem. 2010, 58, 3056. |
[29] | Du, H.; Fan, Z. J.; Yang, L.; Bao, X. P. Chin. J. Org. Chem. 2018, 38, 531. (in Chinese) |
[29] | (杜欢, 范治江, 杨岚, 鲍小平, 有机化学, 2018, 38, 531.) |
[30] | Hong, Y.; Dai, H.; Ye, L. Y.; Zhong, S. L.; Gao, X. F.; Shi, Y. J.; Li, C. J.; Shi, J.; Shi, L. Chin. J. Org. Chem. 2017, 37, 3006. (in Chinese) |
[30] | (洪宇, 戴红, 叶林玉, 仲苏林, 曹雄飞, 石玉军, 李春建, 石健, 有机化学, 2017, 37, 3006.) |
[31] | Luo, D. X.; Guo, S. X.; He, F.; Chen, S. X.; Dai, A. L.; Zhang, R. F.; Wu, J. J. Agric. Food Chem. 2020, 68, 7226. |
[32] | Chen, Y.; Li, P.; Chen, M.; Su, S. J.; He, J.; Zhang, M. Liu, L. W.; Xue, W. Chin. J. Org. Chem. 2019, 39, 2813. (in Chinese) |
[32] | (陈英, 李普, 陈梅, 苏时军, 贺军, 张敏, 柳立伟, 薛伟, 有机化学, 2019, 39, 2813.) |
[33] | Shao, L. H.; Gan, Y. Y.; Hou, M.; Tao, S. L.; Zhang, L. Q.; Wang, Z. C.; Ouyang, G. P. Chin. J. Org. Chem. 2020, 40, 1975. (in Chinese) |
[33] | (邵利辉, 甘宜远, 侯迷, 陶世林, 张丽琼, 王贞超, 欧阳贵平, 有机化学, 2020, 40, 1975.) |
[34] | Xu, F. Z.; Wang, Y. Y.; Luo, D. X.; Yu, G.; Wu, Y. K.; Dai, A. L.; Zhao, Y. H.; Wu, J. ChemistrySelect 2018, 3, 2795. |
[35] | Kang, S. H.; Song, B. A.; Wu, J.; He, M.; Hu, D. Y.; Jin, L. H.; Zeng, S.; Xue, W.; Yang, S. Eur. J. Med. Chem. 2013, 67, 14. |
[36] | Li, P.; Hu, D. Y.; Xie, D. D.; Chen, J. X.; Jin, L. H.; Song, B. A. J. Agric. Food Chem. 2018, 66, 3093. |
[37] | Dalgaard, P.; Ross, T.; Kamperman, L.; Neumeyer, K.; McMeekin, T. A. Int. J. Food Microbiol. 1994, 23, 391. |
[38] | Lungu, L.; Ciocarlan, A.; Barba, A.; Shova, S.; Pogrebnoi, S.; Mangalagui, L.; Moldoveanu, C.; Vornicu, N.; Ambrosio, M. D.; Babak, M. V.; Arion, V. B.; Aricu, A. Chem. Heterocycl. Compd. 2019, 55, 716. |
[39] | Maienfisch, P.; Hall, R. G. Chimia 2004, 58, 93. |
[40] | Theodoridis, G. Adv. Fluorine Sci. 2006, 2, 121. |
[41] | Feng, M. L.; Li, Y. F.; Zhu, H. J.; Zhao, L. Xi, B. B.; Ni, J. P. J. Agric. Food Chem. 2010, 58, 10999. |
[42] | Abbott, W. S. J. Econ. Entomol. 1925, 18, 265. |
[43] | Zhao, Q. Q.; Li, Y. Q.; Xiong, L. X.; Wang, Q. M. J. Agric. Food Chem. 2010, 58, 4992. |
/
〈 |
|
〉 |