过硫酸铵促进喹喔啉-2(1H)-酮三氟甲基化反应
收稿日期: 2020-12-28
修回日期: 2021-04-18
网络出版日期: 2021-06-02
基金资助
湖南省科技重大专项(2014FJ1010); 湖南省自然科学基金(2018JJ2019)
Ammonium Persulfate Promotes Trifluoromethylation of Quinoxalin-2(1H)-ones
Received date: 2020-12-28
Revised date: 2021-04-18
Online published: 2021-06-02
Supported by
Important Science & Technology Specific Projects in Hunan Province(2014FJ1010); Natural Science Fundation of Hunan Province(2018JJ2019)
报道了温和条件下, 过硫酸铵促进喹喔啉-2(1H)-酮与CF3SO2Na三氟甲基化制备3-三氟甲基喹喔啉-2(1H)-酮类的反应, 开发了一种绿色、高效制备3-三氟甲基喹喔啉-2(1H)-酮衍生物的方法. 该方法对不同取代的喹喔啉-2(1H)-酮衍生物具有较好的适用性, 均以较高的产率得到相应的目标产物. 与已有方法相比, 本方法具有底物适用范围广、产率高、实验操作简便等优点, 为3-三氟甲基喹喔啉-2(1H)-酮的制备提供了有效的路径.
关键词: 过硫酸铵; 三氟甲基化; 喹喔啉-2(1H)-酮衍生物; 三氟甲基亚磺酸钠
易荣楠 , 刘冬娴 , 贺江南 , 赵明明 , 许新华 . 过硫酸铵促进喹喔啉-2(1H)-酮三氟甲基化反应[J]. 有机化学, 2021 , 41(8) : 3285 -3291 . DOI: 10.6023/cjoc202012046
A green and efficient method for the synthesis of 3-trifluoromethylquinoxalin-2(1H)-ones via direct trifluoromethylation of quinoxalin-2(1H)-ones with CF3SO2Na promoted by ammonium persulfate ((NH4)2S2O8) under mild conditions has been developed. This process is scalable and tolerates a wide spectrum of quinoxalin-2(1H)-one derivatives to deliver corresponding products in good to excellent yields. Comparing to the previous methods, this strategy has the advantages of wide functional groups tolerance, high yield and simple operation, providing an efficient synthetic approach to 3-trifluoromethyl- quinoxalin-2(1H)-ones.
[1] | Carta, A.; Piras, S.; Loriga, G. Mini-Rev. Med. Chem. 2006, 6, 1179. |
[2] | Shi, L.; Hu, W.; Wu, J.; Zhou, H.; Li, X. Mini-Rev. Med. Chem. 2018, 18, 392. |
[3] | Xu, Z.; Shaw, A. Y.; Dietrich, J.; Cappelli, A. P.; Nichol, G.; Hulme, C. Mol. Diversity 2012, 16, 73. |
[4] | Moustafa, O. J. Chin. Chem. Soc. 2000, 47, 351. |
[5] | Yang, Y.; Zhang, S.; Wu, B.; Ma, M.; Chen, X.; Qin, X.; He, M.; Hussain, S.; Jing, C.; Ma, B.; Zhu, C. Chem. Med. Chem. 2012, 7, 823. |
[6] | Mao, P.; Zhu, J. L.; Yuan, J. W.; Yang, L. R.; Xiao, Y. M.; Zhang, C. S. Chin. J. Org. Chem. 2019, 39, 1529. (in Chinese) |
[6] | (毛璞, 朱军亮, 袁金伟, 杨亮茹, 肖咏梅, 张长森, 有机化学, 2019, 39, 1529.) |
[7] | Wang, L. L.; Bao, P. L.; Liu, W. W.; Liu, S. T.; Hu, C. S.; Yue, H. L.; Yang, D. S.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189. (in Chinese) |
[7] | (王雷雷, 鲍鹏丽, 刘维维, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.) |
[8] | Hai, M.; Guo, L. N.; Wang, L.; Duan, X. H. Acta Chim. Sinica 2019, 77, 895. (in Chinese) |
[8] | (海曼, 郭丽娜, 王乐, 段新华, 化学学报, 2019, 77, 859.) |
[9] | Xie, L. Y.; Peng, S.; Yang, L. H.; Peng, C.; Lin, Y. W.; Yu, X.; Cao, Z.; Peng, Y. Y.; He, W. M. Green Chem. 2021, 23, 374. |
[10] | Yang, L.; Gao, P.; Duan, X. H. Gu, Y. R.; Guo, L. N. Org. Lett. 2018, 20, 1034. |
[11] | Yuan, J. W.; Fu, J. H.; Liu, S. N.; Xiao, Y. N.; Mao, P.; Qu, L. B. Org. Biomol. Chem. 2018, 16, 3203. |
[12] | Xie, L. Y.; Bai, Y. S.; Xu, X. Q.; Peng, X.; Tang, H. S.; Huang, Y.; Lin, Y. W.; Cao, Z.; He, W. M. Green Chem. 2020, 22, 1720. |
[13] | Gao, M.; Li, Y.; Xie, L.; Chauvin, R.; Cui, X. Chem. Commun. 2016, 52, 2846. |
[14] | Gupta, A.; Deshmukh, M. S.; Jain, N. J. Org. Chem. 2017, 82, 4784. |
[15] | Purser, S.; Moore, P. R.; Swallow, S.; Veronique, G. Chem. Soc. Rev. 2008, 37, 320. |
[16] | Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. |
[17] | Lawrence, D. S.; Copper, J. E.; Smith, C. D. J. Med. Chem. 2001, 44, 594. |
[18] | O'Brien, A. G.; Maruyama, A.; Inokuma, Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Angew. Chem., Int. Ed. 2017, 53, 11868. |
[19] | Wang, L.; Zhang, Y.; Li, F. Adv. Synth. Catal. 2018, 360, 3969. |
[20] | Xue, W.; Su, Y.; Wang, K. H.; Cao, L.; Feng, Y.; Zhang, W.; Huang, D.; Hu, Y. Asian J. Org. Chem. 2019, 8, 887. |
[21] | Zheng, Y.; You, Y.; Shen, Q.; Zhang, J.; Liu, L.; Duan, X.-H. Org. Chem. Front. 2020, 7, 2069. |
[22] | Chen, J.-Y.; Li, Y. H.; Mei, L.; Wu, H. Y. Chin. J. Org. Chem. 2019, 39, 3040. (in Chinese) |
[22] | (陈锦杨, 李玉涵, 梅兰, 吴红谕, 有机化学, 2019, 39, 3040.) |
[23] | Liu, K. J.; Deng, J. H.; Yang, J.; Gong, S. F.; Lin, Y. W.; He, J. Y.; Cao, Z.; He, W. M. Green Chem. 2020, 22, 433. |
[24] | Shi, S.-H.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485. |
[25] | Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27. |
[26] | Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Res. 2020, 53, 72. |
[27] | Chen, J. Y.; Zhong, C. T.; Gui, Q. W.; Zhou, Y. M.; Fang, Y. Y.; Liu, K. J.; Lin, Y. W.; Cao, Z.; He, W. M. Chin. Chem. Lett. 2021, 32, 475. |
[28] | Chen, J. Y.; Wu, H. Y.; Gui, Q. W.; Yan, S. S.; Deng, J.; Lin, Y. W.; Cao, Z.; He, W. M. Chin. J. Catal. 2021, 42, 1445. |
[29] | Wei, Z. J.; Qi, S. J.; Xu, Y. H.; Liu, H.; Wu, J. Z.; Li, H. S.; Xia, C. C.; Duan, G. Y. Adv. Synth. Catal. 2019, 361, 5490. |
[30] | Wang, J. Y.; Sun, B.; Zhang, L.; Xu, T. W.; Xie, Y. Y.; Jin, C. Asian J. Org. Chem. 2019, 8, 1942. |
[31] | Sutherland, D. R.; Veguillas, M.; Oates, C. L.; Lee, A. L. Org. Lett. 2018, 20, 6863. |
[32] | Jacobsen, E. J.; Tenbrink, R. E.; Stelzer, L. S.; Belonga, K. L.; Im, H. K.; Im, W. B.; Sethy, V. H.; Tang, A. H. J. Med. Chem. 1996, 39, 158. |
[33] | Aoki, K.; Obata, T.; Yamazaki, Y. Chem. Pharm. Bull. 2007, 55, 255. |
[34] | Chen, D.; Wang, Z. J.; Bao, W. J. Org. Chem. 2010, 75, 5768. |
[35] | Carrër, A.; Brion, J. D.; Messaoudi, S.; Alami, M. Org. Lett. 2013, 15, 5606. |
[36] | Landge, S. M.; Torok, B. Catal. Lett. 2008, 22, 338. |
[37] | Dou, G. Y.; Jiang, Y. Y.; Xu, K.; Zeng, C. C. Org. Chem. Front. 2019, 6, 2392. |
/
〈 |
|
〉 |