1,1'-螺二氢茚-7,7'-二酚(SPINOL)及类似物中螺环骨架的构建方法
收稿日期: 2021-03-28
修回日期: 2021-06-01
网络出版日期: 2021-06-17
基金资助
国家自然科学基金(21875023)
Construction of Spiro Skeletons in 2,2',3,3'-Tetrahydro-1,1'- spirobi[1H-indene]-7,7'-diol (SPINOL) and Analogues
Received date: 2021-03-28
Revised date: 2021-06-01
Online published: 2021-06-17
Supported by
National Natural Science Foundation of China(21875023)
1,1'-螺二氢茚骨架是在21世纪初发展起来的一类新型手性配体或催化剂的骨架, 具有C2对称性, 以及刚性强、稳定性高、易于修饰等特点. 周其林等将手性1,1'-螺二氢茚-7,7'-二酚(SPINOL)发展为一系列螺环配体及催化剂, 在催化不对称合成领域获得了巨大的成功. 1,1'-螺二氢茚骨架的配体及催化剂被认为是为数不多的“优势手性配体和催化剂”. 尽管催化的不对称合成已经出现, 目前方法得到的SPINOL及类似物多为外消旋体, 需要进行费力的手性拆分. 合成和拆分步骤繁琐的局限性对其大规模生产形成了阻碍. 因此, 如何从廉价易得的原料出发, 发展相应手性螺环骨架配体的高效、不对称催化合成新方法, 是非常迫切而且具有挑战性的课题. 总结了最近20年SPINOL及螺环骨架类似化合物的合成方法, 包括含杂原子的螺环骨架, 希望能对配体或催化剂用途的螺环骨架的构建有所启发.
关键词: 1,1'-螺二氢茚-7,7'-二酚(SPINOL); 螺环骨架构建; C2对称性配体; 手性拆分
赵启航 , 唐珑畅 , 焦鹏 . 1,1'-螺二氢茚-7,7'-二酚(SPINOL)及类似物中螺环骨架的构建方法[J]. 有机化学, 2021 , 41(9) : 3400 -3413 . DOI: 10.6023/cjoc202103053
1,1'-Spirobiindane possesses a new type of skeleton for chiral ligands developed in the early 21st century, which has the characteristics of C2-symmetry, strong rigidity, high stability, and ease of modification. Zhou et al. developed 2,2',3,3'-tetrahydro-1,1'-spirobi[1H-indene]-7,7'-diol (SPINOL) into series of chiral ligands and catalysts, and achieved great success in the field of catalytic asymmetric synthesis. These ligands and catalysts bearing 1,1'-spirobiindane skeleton are considered as few “privileged chiral ligands and catalysts”. Though catalytic asymmetric syntheses have appeared, in the present methods SPINOL and analogues are usually obtained in racemic forms, which require further chiral resolution. Laborious synthetic and resolution steps limit their productions in industrial scale. Therefore, it is urgent as well as challenging to develop efficient method of asymmetric catalytic synthesis of chiral spiro ligands from cheap and readily available raw materials. The synthetic methods of SPINOL and analgoues in the past 20 years are summarized, including those bearing heteroatoms in the spiro skeleton, in the hope of sparking new ideas for the construction of spiro skeletons in ligands or catalysts.
[1] | Chan, A. S. C.; Hu, W.-H.; Pai, C.-C.; Lau, C.-P.; Jiang, Y.-Z.; Mi, A.-Q.; Yan, M.; Sun, J.; Lou, R.-L.; Deng, J.-G. J. Am. Chem. Soc. 1997, 119, 9570. |
[2] | (a) Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Angew. Chem., Int. Ed. 2009, 48, 5345. |
[2] | (b) Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Sci. Sin.: Chem. 2010, 40, 950.(韩召斌, 王正, 张绪穆, 丁奎岭, 中国科学: 化学, 2010, 40, 950. (in Chinese). |
[2] | c) Han, Z.; Wang, Z.; Zhang, X.; Ding, K. Chin. Sci. Bull. 2010, 55, 2840. |
[2] | (d) Wang, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 936. |
[2] | (e) Liu, X.; Han, Z.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2014, 53, 1978. |
[3] | (a) Zhang, B.; Hua, H.; Gao, L.; Liu, C.; Qiu, Y.; Zhou, P.; Zhou, Z.; Zhao, J.; Liang, Y. Org. Chem. Front. 2017, 4, 1376. |
[3] | (b) Molteni, V.; Rhodes, D.; Rubins, K.; Hansen, M.; Bushman, F. D.; Siegel, J. S. J. Med. Chem. 2000, 43, 2031. |
[4] | Birman, V. B.; Rheingold, A. L.; Lam, K.-C. Tetrahedron: Asymmetry 1999, 10, 125. |
[5] | In their paper Ref. 5a in 1956, Cahn, Ingold and Prelog considered the chirality similar to SPINOL as axial type, and defined the absolute configuration according to the rules for BINOL. In their paper (Ref. [5b]) in 1966, they definitely considered the same chirality as central type, and gave new rules to define the chirality. Since the original report on SPINOL by Birman, scholars around the world followed the new rules by Cahn, Ingold and Prelog to define the absolute configurations of spiro centers in SIPNOL and analogues, in which an axis with restricted rotation is absent. For this reason, the chiral senses of (S)-SPINOL and (R)-BINOL are the same. We think it is more reasonable to consider the chirality in SPINOL as central instead of axial type. (a) Cahn, R. S.; Ingold, C. K.; Prelog, V. Experientia 1956, 12, 81. |
[5] | (b) Cahn, R. S.; Ingold, C. K.; Prelog, V. Angew. Chem., Int. Ed. 1966, 5, 385. |
[5] | (c) Favre, H. A.; Powell, W. H. Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names, 2013 Royal Society of Chemistry, Cambridge, 2014, p. 1261. |
[5] | (d) Lin, G.-Q.; Sun, X.-W.; Chen, Y.-Q.; Li, Y.-M.; Chan, A. S. C. Chiral Synthesis-Asymmetric Reactions and Their Applications, 5th ed., Science Press, Beijing, 2013, p. 9. (in Chinese). |
[5] | ( 林国强, 孙兴文, 陈耀全, 李月明, 陈新滋, 手性合成--不对称反应及其应用, 第五版, 科学出版社, 北京, 2013, p. 9.) |
[6] | (a) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348. |
[6] | (b) Fu, Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem. Commun. 2002, 480. |
[7] | (a) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41, 581. |
[7] | (b) Ding, K.; Han, Z.; Wang, Z. Chem. Asian. J. 2009, 4, 32. |
[7] | (c) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2014, 72, 778. (in Chinese). |
[7] | ( 谢建华, 周其林, 化学学报, 2014, 72, 778.) |
[8] | (a) Xu, F.; Huang, D.; Han, C.; Shen, W.; Lin, X.; Wang, Y. J. Org. Chem. 2010, 75, 8677. |
[8] | (b) Rahman, A.; Lin, X. Org. Biomol. Chem. 2018, 16, 4753. |
[9] | Li, Z.; Liang, X.-M.; Wu, F.; Wan, B.-S. Tetrahedron: Asymmetry 2004, 15, 665. |
[10] | (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155. |
[10] | (b) Brunel, J. M. Chem. Rev. 2005, 105, 857. |
[10] | (c) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563. |
[11] | Zhang, J.-H.; Liao, J.; Cui, X.; Yu, K.-B.; Zhu, J.; Deng, J.-G.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L.; Chung, L.-W.; Ye, T. Tetrahedron: Asymmetry 2002, 13, 1363. |
[12] | Lu, S.; Poh, S. B.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 11041. |
[13] | Huang, D. Ph.D. Dissertation, Zhejiang University, Zhejiang, 2013. (in Chinese). |
[13] | ( 黄丹, 博士论文, 浙江大学, 浙江, 2013.) |
[14] | Li, S.; Zhang, J.-W.; Li, X.-L.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2016, 138, 16561 |
[15] | (a) Huang, D.; Li, X.; Xu, F.; Li, L.; Lin, X. ACS Catal. 2013, 3, 2244. |
[15] | (b) Li, X.; Chen, D.; Gu, H.; Lin, X. Chem. Commun. 2014, 50, 7538. |
[16] | Venugopal, M.; Elango, S.; Parthiban, A.; Eni. Tetrahedron: Asymmetry 2004, 15, 3427. |
[17] | Zheng, Z.; Cao, Y.; Zhu, D.; Wang, Z.; Ding, K. Chem.-Eur. J. 2019, 25, 9491. |
[18] | Zheng, Z.; Cao, Y.; Chong, Q.; Han, Z.; Ding, J.; Luo, C.; Wang, Z.; Zhu, D.; Zhou, Q.-L.; Ding, K. J. Am. Chem. Soc. 2018, 140, 10374. |
[19] | Yin, L.; Xing, J.; Wang, Y.; Shen, Y.; Lu, T.; Hayashi, T.; Dou, X. Angew. Chem., Int. Ed. 2019, 58, 2474. |
[20] | Chang, S.; Wang, L.; Lin, X. Org. Biomol. Chem. 2018, 16, 2239. |
[21] | (a) Gu, H.; Han, Z.; Xie, H.; Lin, X. Org. Lett. 2018, 20, 6544. |
[21] | (b) Lin, X.; Han, Z.CN 109020788, 2018. (in Chinese). |
[22] | Zhou, Q.; Pan, R.; Shan, H.; Lin, X. Synthesis 2019, 51, 557. |
[23] | Wang, L.; Zhong, J.; Lin, X. Angew. Chem., Int. Ed. 2019, 58, 15824 |
[24] | Smith, L. K.; Baxendale, I. R. Org. Biomol. Chem. 2015, 13, 9907. |
[25] | (a) Ding, A.; Meazza, M.; Guo, H.; Yang, J.-W.; Rios, R. Chem. Soc. Rev. 2018, 47, 5946. |
[25] | (b) Xu, P.; Yu, J.; Chen, C.; Cao, Z.; Zhou, F.; Zhou, J. ACS Catal. 2019, 9, 1820. |
[26] | Chen, G.; Lin, B.; Huang, J.; Zhao, L.; Chen, Q.; Jia, S.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 8064. |
[27] | Yang, W.; Wang, X.; Jin, X.; Sun, H.; Guo, R.; Xu, W.; Cai, Q. Adv. Synth. Catal. 2019, 361, 562. |
[28] | Freixa, Z.; Beentjes, M. S.; Batema, G. D.; Dieleman, C. B.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Fraanje, J.; Goubitz, K.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2003, 42, 1284. |
[29] | Freixa, Z.; Kamer, P. C. J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2005, 44, 4385. |
[30] | Jacquet, O.; Clément, N. D.; Blanco, C.; Belmonte, M. M.; Benet- Buchholz, J.; van Leeuwen, P. W. M. N. Eur. J. Org. Chem. 2012, 4844. |
[31] | (a) Wang, X.; Meng, F.; Wang, Y.; Han, Z.; Chen, Y.; Liu, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 9276. |
[31] | (b) Wang, X.; Guo, P.; Han, Z.; Wang, X.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2014, 136, 405. |
[32] | Argüelles, A. J.; Sun, S.; Budaitis, B. G.; Nagorny, P. Angew. Chem., Int. Ed. 2018, 57, 5325. |
[33] | Huang, J.; Hong, M.; Wang, C.; Kramer, S.; Lin, G.; Sun, X. J. Org. Chem. 2018, 83, 12838. |
[34] | Wang, J.; Yuan, Y.; Xiong, R.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2012, 14, 2210. |
[35] | Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 3466. |
[36] | Liu, T.; Feng, J.; Chen, C.; Deng, Z.; Kotagiri, R.; Zhou, G.; Zhang, X.; Cai, Q. Org. Lett. 2019, 21, 4505. |
[37] | Sun, G.; Wang, Z.; Luo, Z.; Lin, Y.; Deng, Z.; Li, R.; Zhang, J. J. Org. Chem. 2020, 85, 10584. |
[38] | Guo, W.; Liu, Q.; Jiang, J.; Wang, J. Org. Lett. 2020, 22, 3110. |
[39] | Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520. |
[40] | Chang, X.; Ma, P.; Chen, H.; Li, C.; Wang, P. Angew. Chem., Int. Ed. 2020, 59, 8937. |
/
〈 |
|
〉 |