综述与进展

镍催化醇衍生物构筑碳-碳键的偶联反应研究进展

  • 吴良 ,
  • 魏瀚林 ,
  • 陈建中 ,
  • 张万斌
展开
  • a 上海交通大学药学院 变革性分子前沿科学中心 上海市手性药物分子工程重点实验室 上海 200240
    b 上海交通大学化学化工学院 上海 200240

收稿日期: 2021-06-10

  修回日期: 2021-06-22

  网络出版日期: 2021-07-20

基金资助

上海市“超级博士后”激励计划(2020272); 国家自然科学基金(21620102003); 国家自然科学基金(21772119); 国家自然科学基金(21831005)

Development of Nickel-Catalyzed Cross-Coupling of Alcohol Derivatives to Construct Carbon-Carbon Bonds

  • Liang Wu ,
  • Hanlin Wei ,
  • Jianzhong Chen ,
  • Wanbin Zhang
Expand
  • a Shanghai Key Laboratory for Molecular Engineering and Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240
    b School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240
* Corresponding authors. E-mail: ;

Received date: 2021-06-10

  Revised date: 2021-06-22

  Online published: 2021-07-20

Supported by

Shanghai Post-Doctoral Excellence Program(2020272); National Natural Science Foundation of China(21620102003); National Natural Science Foundation of China(21772119); National Natural Science Foundation of China(21831005)

摘要

过渡金属催化构筑碳-碳键的交叉偶联反应由于其高效性、高选择性而得到了研究人员的广泛关注. 近年来, 含C(sp3)—O键的亲电试剂由于其商业易得或容易合成、反应选择性高、环境友好等优点而被用来替代有机卤化物, 应用到构建C(sp3)—C键的交叉偶联反应中. 一系列高效催化体系得以陆续报道, 其中镍催化剂由于其储量丰富、价格便宜以及独特的催化活性和选择性而被逐步应用到此类反应中, 并取得了显著的成果. 综述了镍催化醇衍生物参与的偶联反应的最新研究进展, 主要包括镍催化甲醇或伯醇衍生物参与的偶联反应, 镍催化仲醇衍生物参与的偶联反应, 镍催化叔醇衍生物参与的偶联反应, 以及镍催化缩醛和N,O-缩醛衍生物参与的偶联反应等.

本文引用格式

吴良 , 魏瀚林 , 陈建中 , 张万斌 . 镍催化醇衍生物构筑碳-碳键的偶联反应研究进展[J]. 有机化学, 2021 , 41(11) : 4208 -4239 . DOI: 10.6023/cjoc202106021

Abstract

Transition metal-catalyzed cross-coupling reactions for building carbon-carbon bonds have received extensive attention due to their high efficiency and selectivity. In recent years, electrophiles which containing C(sp3)—O bonds have been used to replace organic halides in cross-coupling reactions for the construction of C(sp3)—C bonds, due to their advantages of commercial availability or facile synthesis, high reaction selectivity, and environmental friendliness. Among those reported highly efficient catalysts, nickel catalysts have been gradually applied to such reactions and achieved remarkable advances due to their earth-abundant, cheap, unique catalytic activities and selectivity. Because of the small radius of the nickel atom, C(sp3)—Ni can inhibit and/or manipulate β-H elimination reactions, which reduces the formation of by-products. Nickel has several variable valence states and can flexibly participate in redox-neutral coupling reactions and reductive cross-coupling reactions. The latest research progress in nickel-catalyzed coupling reactions employing alcohol derivatives as electrophiles is reviewed. It is separated into four sections including nickel-catalyzed cross-coupling reactions involving methanol or primary alcohol derivatives, nickel-catalyzed cross-coupling reactions involving secondary alcohol derivatives, nickel-catalyzed cross-coupling reactions involving acetal and N,O-acetal derivatives, and nickel-catalyzed cross-coupling reactions involving tertiary alcohol derivatives.

参考文献

[1]
(a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.
[1]
(b) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
[2]
(a) Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9047.
[2]
(b) Hanna, L. E.; Jarvo, E. R. Angew. Chem., Int. Ed. 2015, 54, 15618.
[2]
(c) Li, Y.; Fan, Y.; Jia, Q. Chin. J. Org. Chem. 2019, 39, 350. (in Chinese)
[2]
(李娅琼, 范玉航, 贾乾发, 有机化学, 2019, 39, 350.)
[3]
(a) Knappke, C. E. I.; Grupe, S.; Gärtner, D.; Corpet, M.; Gosmini, C.; von Wangelin, A. J. Chem.-Eur. J. 2014, 20, 6828.
[3]
(b) Moragas, T.; Correa, A.; Martin, R. Chem.-Eur. J. 2014, 20, 8242.
[3]
(c) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767.
[3]
(d) Gu, J.; Wang, X.; Xue, W.; Gong, H. Org. Chem. Front. 2015, 2, 1411.
[3]
(e) Zhang, W.; Dai, J.; Xu, H. Chin. J. Org. Chem. 2015, 35, 1820. (in Chinese)
[3]
(张文曼, 戴建军, 许华建, 有机化学, 2015, 35, 1820.)
[4]
(a) Quan, M.; Tang, L.; Shen, J.; Yang, G.; Zhang, W. Chem. Commun. 2017, 53, 609.
[4]
(b) Quan, M.; Wang, X.; Wu, L.; Gridnev, I. D.; Yang, G.; Zhang, W. Nat. Commun. 2018, 9, 2258.
[4]
(c) Wang, X.; Quan, M.; Xie, F.; Yang, G.; Zhang, W. Tetrahedron Lett. 2018, 59, 1573.
[4]
(d) Lv, X.-Y.; Fan, C.; Xiao, L.-J.; Xie, J.-H.; Zhou, Q.-L. CCS Chem. 2019, 1, 328.
[4]
(e) Zhang, Y.; He, J.; Song, P.; Wang, Y.; Zhu, S. CCS Chem. 2020, 2, 2259.
[4]
(f) Li, Z.; Wu, D.; Ding, C.; Yin, G. CCS Chem. 2020, 2, 576.
[4]
(g) Wang, Z.-C.; Gao, J.; Cai, Y.; Ye, X.; Shi, S.-L. CCS Chem. 2021, 3, 1445.
[4]
(h) You, C.; Li, X.; Gong, Q.; Wen, J.; Zhang, X. J. Am. Chem. Soc. 2019, 141, 14560.
[4]
(i) Li, B.; Chen, J.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2019, 58, 7329.
[4]
(j) Liu, D.; Li, B.; Chen, J.; Gridnev, I. D.; Yan, D.; Zhang, W.; Nat. Commun. 2020, 11, 5935.
[4]
(k) Hu, Y.; Chen, J.; Li, B.; Zhang, Z.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2020, 59, 5371.
[4]
(l) Chen, J.; Zhang, W. Chin. J. Org. Chem. 2020, 40, 4372. (in Chinese)
[4]
(陈建中, 张万斌, 有机化学, 2020, 40, 4372.)
[4]
(m) Li, B.; Liu, D.; Hu, Y.; Chen, J.; Zhang, Z.; Zhang, W. Eur. J. Org. Chem. 2021, 3421.
[4]
(n) Zhu, C.; Yue, H.; Nikolaienko, P.; Rueping, M. CCS Chem. 2020, 2, 179.
[4]
(o) Han, X.-W.; Zhang, T.; Yao, W.-W.; Chen, H.; Ye, M. CCS Chem. 2020, 2, 955.
[4]
(p) Ding, D.; Dong, H.; Wang, C. CCS Chem. 2021, 3, 718.
[4]
(q) Zheng, Y.-L.; Ye, M. Chin. J. Chem. 2020, 38, 489.
[4]
(r) Li, Y.-Q.; Li, F.; Shi, S.-L. Chin. J. Chem. 2020, 38, 1035.
[4]
(s) Gan, Y.; Zhang, N.; Huang, S.; Liu, Y. Chin. J. Chem. 2020, 38, 1686.
[4]
(t) Xiao, C.; Xiao, W. Chin. J. Org. Chem. 2020, 40, 3004. (in Chinese)
[4]
(肖聪, 肖文精, 有机化学, 2020, 40, 3004.)
[4]
(u) Xu, G.-L.; Liu, C.-Y.; Pang, X.; Liu, X.-Y.; Shu, X.-Z. CCS Chem. 2021, 3, 1147.
[4]
(v) Shao, P.; Yu, T.; Lu, H.; Xu, P.-F.; Wei, H. CCS Chem. 2020, 2, 1862.
[4]
(w) Shen, H.-C.; Chen, Y.; Zhang, Y.; Jiang, H.-M.; Zhang, W.-Q.; Li, W.-A.; Sayed, M.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. CCS Chem. 2021, 3, 421.
[4]
(x) Zhang, H.; Jia, Y. Chin. J. Org. Chem. 2021, 41, 1749. (in Chinese)
[4]
(张晗月, 贾义霞, 有机化学, 2021, 41, 1749.)
[5]
(a) Tamaru, Y. Modern Organonickel Chemistry, Wiley-VCH, Weinheim, 2005.
[5]
(b) Ogoshi, S. Nickel Catalysis in Organic Synthesis: Methods and Reactions, Wiley-VCH, Weinheim, 2020.
[5]
(c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
[5]
(d) Ananikov, V. P. ACS Catal. 2015, 5, 1964.
[5]
(e) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
[5]
(f) Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230.
[5]
(g) Fu, G. C. ACS Cent. Sci. 2017, 3, 692.
[5]
(h) Ruan, L.; Dong, Z.; Chen, C.; Wu, S.; Sun, J. Chin. J. Org. Chem. 2017, 37, 2544. (in Chinese)
[5]
(阮利衡, 董振诚, 陈春欣, 吴爽, 孙京, 有机化学, 2017, 37, 2544.)
[5]
(i) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
[5]
(j) Quan, M.; Wu, L.; Yang, G.; Zhang, W. Chem. Commun. 2018, 54, 10394.
[5]
(k) Liu, Y.; Bandini, M. Chin. J. Chem. 2019, 37, 431.
[5]
(l) Chen, J.; Butt, N. A.; Zhang, W. Res. Chem. Intermed. 2019, 45, 5959.
[5]
(m) Fu, L.; Greßies, S.; Chen, P.; Liu, G. Chin. J. Chem. 2020, 38, 91.
[5]
(n) Liu, Y.-H.; Xia, Y.-N.; Shi, B.-F. Chin. J. Chem. 2020, 38, 635.
[5]
(o) Liu, Y.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 1096. (in Chinese)
[5]
(刘元华, 董秀琴, 张绪穆, 有机化学, 2020, 40, 1096.)
[5]
(p) Cheng, L.; Zhou, Q. Acta Chim. Sinica 2020, 78, 1017. (in Chinese)
[5]
(程磊, 周其林, 化学学报, 2020, 78, 1017.)
[5]
(q) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124.
[5]
(r) Li, Z. L.; Jin, J.; Huang, S. H. Chin. J. Org. Chem. 2020, 40, 563. (in Chinese)
[5]
(李祯龙, 金健, 黄莎华, 有机化学, 2020, 40, 563.)
[5]
(s) Dai, H.; Wu, F.; Bai, D. Chin. J. Org. Chem. 2020, 40, 1423. (in Chinese)
[5]
(代洪雪, 吴芬, 白大昌, 有机化学, 2020, 40, 1423.)
[5]
(t) Chen, S.; Zhao, Y. Chin. J. Org. Chem. 2020, 40, 3078. (in Chinese)
[5]
(陈思, 赵延川, 有机化学, 2020, 40, 3078.)
[5]
(u) Luo, Y.-C.; Xu, C.; Zhang, X. Chin. J. Chem. 2020, 38, 1371.
[5]
(v) Xue, W.; Jia, X.; Wang, X.; Tao, X.; Yin, Z.; Gong, H. Chem. Soc. Rev. 2021, 50, 4162.
[5]
(w) Xie, J.-Q.; Liang, R.-X.; Jia, Y.-X. Chin. J. Chem. 2021, 39, 710.
[6]
(a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N.; Percec, K. V. Chem. Rev. 2011, 111, 1346.
[6]
(b) Cornella, J.; Zarate, C.; Martin, R. Chem. Soc. Rev. 2014, 43, 8081.
[6]
(c) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717.
[6]
(d) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Acc. Chem. Res. 2015, 48, 2344.
[6]
(e) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
[6]
(f) Zarate, C.; van Gemmeren, M.; Somerville, R. J.; Martin, R. Adv. Organomet. Chem. 2016, 66, 143.
[6]
(g) Pound, S. M.; Watson, M. P. Chem. Commun. 2018, 54, 12286.
[6]
(h) Liu, J.; Ye, Y.; Sessler, J. L.; Gong, H. Acc. Chem. Res. 2020, 53, 1833.
[6]
(i) Xu, J.; Bercher, O. P.; Talley, M. R.; Watson, M. P. ACS Catal. 2021, 11, 1604.
[7]
(a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
[7]
(b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
[7]
(c) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
[7]
(d) Diéguez, M.; Pàmies, O. Acc. Chem. Res. 2010, 43, 312.
[7]
(e) Weaver, J. D.; Recio, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
[7]
(f) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.
[7]
(g) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093.
[7]
(h) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219. (in Chinese)
[7]
(汤溟淏, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[7]
(i) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819.
[7]
(j) Huo, X.; Zhang, J.; Fu, J.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.
[7]
(k) Zhang, M.-M.; Luo, Y.-Y.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838. (in Chinese)
[7]
(张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838.)
[7]
(l) Li, Z.; Zheng, J.; Li, C.; Wu, W.; Jiang, H. Chin. J. Chem. 2019, 37, 140.
[7]
(m) Wang, R.; Luan, Y.; Ye, M. Chin. J. Chem. 2019, 37, 720.
[7]
(n) Yao, K.; Liu, H.; Yuan, Q.; Liu, Y.; Liu, D.; Zhang, W. Acta Chim. Sinica 2019, 77, 993. (in Chinese)
[7]
(姚坤, 刘浩, 袁乾家, 刘燕刚, 刘德龙, 张万斌, 化学学报, 2019, 77, 993.)
[7]
(o) Zhang, H.-H.; Yu, S. Acta Chim. Sinica 2019, 77, 832. (in Chinese)
[7]
(张洪浩, 俞寿云, 化学学报, 2019, 77, 832.)
[7]
(p) Zhang, H.; Gu, Q.; You, S. Chin. J. Org. Chem. 2019, 39, 15. (in Chinese)
[7]
(张慧君, 顾庆, 游书力, 有机化学, 2019, 39, 15.)
[7]
(q) Huang, L.; Cai, Y.; Zhang, H.-J.; Zheng, C.; Dai, L.-X.; You, S.-L. CCS Chem. 2019, 1, 106.
[7]
(r) Wang, R.-Q.; Shen, C.; Cheng, X.; Wang, Z.-F.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Chin. J. Chem. 2020, 38, 807.
[7]
(s) He, R.; Huo, X.; Zhao, L.; Wang, F.; Jiang, L.; Liao, J.; Zhang, W. J. Am. Chem. Soc. 2020, 142, 8097.
[7]
(t) Wang, Y.; Luo, S. Chin. J. Org. Chem. 2020, 40, 2161. (in Chinese)
[7]
(王娅宁, 罗三中, 有机化学, 2020, 40, 2161.)
[7]
(u) Ju, C.; Wu, Z.; Li, Y.; Zhang, W. Chin. J. Org. Chem. 2020, 40, 3925. (in Chinese)
[7]
(居辰阳, 吴正兴, 李云艺, 张万斌, 有机化学, 2020, 40, 3925.)
[7]
(v) Li, G.; Huo, X.; Jiang, X.; Zhang, W. Chem. Soc. Rev. 2020, 49, 2060.
[7]
(w) Ma, X.; Yu, J.; Wang, Z.; Zhang, Y.; Zhou, Q. Chin. J. Org. Chem. 2020, 40, 2669. (in Chinese)
[7]
(马献涛, 于静, 王子龙, 张赟, 周秋菊, 有机化学, 2020, 40, 2669.)
[7]
(x) Tian, F.; Zhang, J.; Yang, W.; Deng, W. Chin. J. Org. Chem. 2020, 40, 3262. (in Chinese)
[7]
(田飞, 张键, 杨武林, 邓卫平, 有机化学, 2020, 40, 3262.)
[7]
(y) Huo, X.; Zhao, L.; Luo, Y.; Wu, Y.; Sun, Y.; Li, G.; Gridneva, T.; Zhang, J.; Ye, Y.; Zhang, W. CCS Chem. 2021, 3, 1933.
[7]
(z) Xiao, J.; Xu, H.; Huo, X.; Zhang, W.; Ma, S. Chin. J. Chem. 2021, 39, 1958.
[8]
Yanagisawa, A.; Nomura, N.; Habaue, S.; Yamamoto, H. Tetrahedron Lett. 1989, 30, 6409.
[9]
Nagel, U.; Nedden, H. G. Inorg. Chim. Acta 1998, 269, 34.
[10]
(a) Novak, A.; Fryatt, R.; Woodward, S. C. R. Chim. 2007, 10, 206.
[10]
(b) Novak, A.; Calhorda, M. J.; Costa, P. J.; Woodward, S. Eur. J. Org. Chem. 2009, 898.
[11]
Sumida, Y.; Hayashi, S.; Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 1629.
[12]
Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.
[13]
Ho, C.-Y.; Jamison, T. F. Angew. Chem., Int. Ed. 2007, 46, 782.
[14]
Wang, Z.-J.; Zheng, S.; Romero, E.; Matsui, J. K.; Molander, G. A. Org. Lett. 2019, 21, 6543.
[15]
Tran, V. T.; Li, Z.-Q.; Gallagher, T. J.; Derosa, J.; Liu, P.; Engle, K. M. Angew. Chem., Int. Ed. 2020, 59, 7029.
[16]
Eno, M. S.; Lu, A.; Morken, J. P. J. Am. Chem. Soc. 2016, 138, 7824.
[17]
Guan, B.-T.; Xiang, S.-K.; Wang, B.-Q.; Sun, Z.-P.; Wang, Y.; Zhao, K.-Q.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 3268.
[18]
Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638.
[19]
Huang, Y. K.; Li, G.; Huang, W.-P.; Yu, D.-G.; Shi, Z.-J. Chem. Commun. 2011, 47, 7224.
[20]
Barreiro, E. J.; Ku?mmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215.
[21]
Liang, Z.; Xue, W.; Lin, K.; Gong, H. Org. Lett. 2014, 16, 5620.
[22]
Xu, H.; Zhao, C.; Qian, Q.; Deng, W.; Gong, H. Chem. Sci. 2013, 4, 4022.
[23]
Wang, J.; Zhao, J.; Gong, H. Chem. Commun. 2017, 53, 10180.
[24]
Komeyama, K.; Michiyuki, T.; Osaka, I. ACS Catal. 2019, 9, 9285.
[25]
Smith, R. T.; Zhang, X.; Rincon, J. A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; de Frutos, O.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 17433.
[26]
Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. Science 2018, 360, 1010.
[27]
(a) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
[27]
(b) Chatgilialoglu, C.; Ferreri, C.; Landais, Y.; Timokhin, V. I. Chem. Rev. 2018, 118, 6516.
[28]
Durandetti, M.; Devaud, M.; Perichon, J. New J. Chem. 1996, 20, 659.
[29]
Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
[30]
(a) Lin, X.; Phillips, D. L. J. Org. Chem. 2008, 73, 3680.
[30]
(b) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. J. Am. Chem. Soc. 2013, 135, 12004.
[31]
Dai, Y.; Wu, F.; Zang, Z.; You, H.; Gong, H. Chem.-Eur. J. 2012, 18, 808.
[32]
Moragas, T.; Cornella, J.; Martin, R. J. Am. Chem. Soc. 2014, 136, 17702.
[33]
Chen, H.; Jia, X.; Yu, Y.; Qian, Q.; Gong, H. Angew. Chem., Int. Ed. 2017, 56, 13103.
[34]
Ackerman, L. K. G.; Anka-Lufford, L. L.; Naodovic, M.; Weix, D. J. Chem. Sci. 2015, 6, 1115.
[35]
Yan, X.-B.; Li, C.-L.; Jin, W.-J.; Guo, P.; Shu, X.-Z. Chem. Sci. 2018, 9, 4529.
[36]
Konev, M. O.; Hanna, L. E.; Jarvo, E. R. Angew. Chem., Int. Ed. 2016, 55, 6730.
[37]
Pan, Y.; Gong, Y.; Song, Y.; Tong, W.; Gong, H. Org. Biomol. Chem. 2019, 17, 4230.
[38]
Guo, P.; Wang, K.; Jin, W.-J.; Xie, H.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. J. Am. Chem. Soc. 2021, 143, 513.
[39]
(a) Diccianni, J. B.; Diao, T. Trends Chem. 2019, 1, 830.
[39]
(b) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793.
[40]
Kariofillis, S. K.; Shields, B. J.; Tekle-Smith, M. A.; Zacuto, M. J.; Doyle, A. G. J. Am. Chem. Soc. 2020, 142, 7683.
[41]
Suga, T.; Ukaji, Y. Org. Lett. 2018, 20, 7846.
[42]
(a) Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.
[42]
(b) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M. C. J. Am. Chem. Soc. 2015, 137, 4896.
[42]
(c) Wang, X.; Ma, G.; Peng, Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2018, 140, 14490.
[43]
Chenniappan, V. K.; Peck, D.; Rahaim, R. Tetrahedron Lett. 2020, 61, 151729.
[44]
Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.
[45]
van Gemmeren, M.; Börjesson, M.; Tortajada, A.; Sun, S.-Z.; Okura, K.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 6558.
[46]
Consiglio, G.; Morandini, F.; Piccolo, O. Helv. Chim. Acta 1980, 63, 987.
[47]
(a) Consiglio, G.; Morandini, F.; Piccolo, O. J. Chem. Soc., Chem. Commun. 1983, 112.
[47]
(b) Consiglio, G.; Piccolo, O.; Roncetti, L.; Morandini, F. Tetrahedron 1986, 42, 2043.
[47]
(c) Indolese, A. F.; Consiglio, G. Organometallics 1994, 13, 2230.
[47]
(d) Consiglio, G.; Indolese, A. Organometallics 1991, 10, 3425.
[48]
Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., 2000, 2725.
[49]
Hiyama, T.; Wakasa, N. Tetrahedron Lett. 1985, 26, 3259.
[50]
Nomura, N.; RajanBabu, T. V. Tetrahedron Lett. 1997, 38, 1713.
[51]
Didiuk, M. T.; Morken, J. P.; Hoveyda, A. H. Tetrahedron 1998, 54, 1117.
[52]
(a) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds, John Wiley & Sons, New York, 1994.
[52]
(b) Walsh, P. J.; Kowzlowski, M. C. Fundamentals of Asymmetric Catalysis, University Science Books, Sausalito, CA, 2009.
[53]
Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389.
[54]
Yonova, I. M.; Johnson, A. G.; Osborne, C. A.; Moore, C. E.; Morrissette, N. S.; Jarvo, E. R. Angew. Chem., Int. Ed. 2014, 53, 2422.
[55]
(a) Greene, M. A.; Yonova, I. M.; Williams, F. J.; Jarvo, E. R. Org. Lett. 2012, 14, 4293.
[55]
(b) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 7790.
[56]
Tollefson, E. J.; Dawson, D. D.; Osborne, C. A.; Jarvo, E. R. J. Am. Chem. Soc. 2014, 136, 14951.
[57]
Dawson, D. D.; Jarvo, E. R. Org. Process Res. Dev. 2015, 19, 1356.
[58]
(a) Chen, P.-P.; Lucas, E. L.; Greene, M. A.; Zhang, S.-Q.; Tollefson, E. J.; Erickson, L. W.; Taylor, B. L. H.; Jarvo, E. R.; Hong, X. J. Am. Chem. Soc. 2019, 141, 5835.
[58]
(b) Dawson, D. D.; Oswald, V. F.; Borovik, A. S.; Jarvo, E. R. Chem.-Eur. J. 2020, 26, 3044.
[59]
Wisniewska, H. M.; Swift, E. C.; Jarvo, E. R. J. Am. Chem. Soc. 2013, 135, 9083.
[60]
Do, H.-Q.; Chandrashekar, E. R. R., Fu, G. C. J. Am. Chem. Soc. 2013, 135, 16288.
[61]
Yang, B.; Wang, Z.-X. J. Org. Chem. 2017, 82, 4542.
[62]
Nielsen, D. K.; Doyle, A. G. Angew. Chem., Int. Ed. 2011, 50, 6056.
[63]
(a) Jørgensen, K. A.; Schioett, B. Chem. Rev. 1990, 90, 1483.
[63]
(b) de Bruin, B.; Budzelaar, P. H. M.; Gal, A. W. Angew. Chem., Int. Ed. 2004, 43, 4142.
[63]
(c) Lenarda, M.; Pahor, N. B.; Calligaris, M.; Graziani, M.; Randaccio, L. J. Chem. Soc., Dalton Trans. 1978, 279.
[63]
(d) Schlodder, R.; Ibers, J.; Lenarda, M.; Graziani, M. J. Am. Chem. Soc. 1974, 96, 6893.
[63]
(e) Molinaro, C.; Jamison, T. J. Am. Chem. Soc. 2003, 125, 8076.
[64]
Harris, M. R.; Hanna, L. E.; Greene, M. A.; Moore, C. E.; Jarvo, E. R. J. Am. Chem. Soc. 2013, 135, 3303.
[65]
Zhang, S.-Q.; Taylor, B. L. H.; Ji, C.-L.; Gao, Y.; Harris, M. R.; Hanna, L. E.; Jarvo, E. R.; Houk, K. N.; Hong, X. J. Am. Chem. Soc. 2017, 139, 12994.
[66]
Zhou, Q.; Srinivas, H. D.; Dasgupta, S.; Watson, M. P. J. Am. Chem. Soc. 2013, 135, 3307.
[67]
Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.
[68]
Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000, 603, 189.
[69]
(a) Kobayashi, Y.; Tokoro, Y.; Watatani, K. Tetrahedron Lett. 1998, 39, 7537.
[69]
(b) Kobayashi, Y.; Mizojiri, R.; Ikeda, E. J. Org. Chem. 1996, 61, 5391.
[69]
(c) Kobayashi, Y.; Watatani, K.; Kikori, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 6125.
[69]
(d) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 597.
[69]
(e) Kobayashi, Y.; Tokoro, Y.; Watatani, K. Eur. J. Org. Chem. 2000, 3825.
[70]
Srinivas, H. D.; Zhou, Q.; Watson, M. P. Org. Lett. 2014, 16, 3596.
[71]
Cobb, K. M.; Rabb-Lynch, J. M.; Hoerrner, M. E.; Manders, A.; Zhou, Q.; Watson, M. P. Org. Lett. 2017, 19, 4355.
[72]
Gao, M.; Sun, D.; Gong, H. Org. Lett. 2019, 21, 1645.
[73]
Song, F.; Wang, F.; Guo, L.; Feng, X.; Zhang, Y.; Chu, L. Angew. Chem., Int. Ed. 2020, 59, 177.
[74]
Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862.
[75]
Lin, Z.; Jin, Y.; Hu, W.; Wang, C. Chem. Sci. 2021, 12, 6712.
[76]
Zhao, Y.; Weix, D. J. J. Am. Chem. Soc. 2014, 136, 48.
[77]
Zhao, Y.; Weix, D. J. J. Am. Chem. Soc. 2015, 137, 3237.
[78]
Parasram, M.; Shields, B. J.; Ahmad, O.; Knauber, T.; Doyle, A. G. ACS Catal. 2020, 10, 5821.
[79]
Hu, P.; Chi, H. M.; DeBacker, K. C.; Gong, X.; Keim, J. H.; Hsu, I. T.; Snyder, S. A. Nature 2019, 569, 703.
[80]
Mills, L. R.; Monteith, J. J.; dos Passos Gomes, G.; Aspuru-Guzik, A.; Rousseaux, S. A. L. J. Am. Chem. Soc. 2020, 142, 13246.
[81]
Mills, L. R.; Monteith, J. J.; Rousseaux, S. A. L. Chem. Commun. 2020, 56, 12538.
[82]
Ye, Y.; Chen, H.; Sessler, J. L.; Gong, H. J. Am. Chem. Soc. 2019, 141, 820.
[83]
Zhou, Q.; Cobb, K. M.; Tan, T.; Watson, M. P. J. Am. Chem. Soc. 2016, 138, 12057.
[84]
Xu, J.; Pound, S. M.; Basch, C. H.; Duke, A. D.; Watson, M. P. ChemRxiv DOI: 10.26434/chemrxiv.14403302.v1.
[85]
Xu, J.; Bercher, O. P.; Watson, M. P. J. Am. Chem. Soc. 2021, 143, 8608.
[86]
Wang, Z.; Yin, H.; Fu, G. C. Nature 2018, 563, 379.
[87]
Wu, L.; Yang, G.; Zhang, W. CCS Chem. 2019, 1, 623.
[88]
Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649.
[89]
Wu, K.; Doyle, A. G. Nat. Chem. 2017, 9, 779.
[90]
Arendt, K. M.; Doyle, A. G. Angew. Chem., Int. Ed. 2015, 54, 9876.
[91]
Lin, Z.; Lan, Y.; Wang, C. ACS Catal. 2019, 9, 775.
[92]
Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.
[93]
Shields, J. D.; Ahneman, D. T.; Graham, T. J. A.; Doyle, A. G. Org. Lett. 2014, 16, 142.
[94]
Tao, X.; Chen, Y.; Guo, J.; Wang, X.; Gong, H. Chem. Sci. 2021, 12, 220.
文章导航

/