三价铑催化通过环己二酮高效构建异香豆素类化合物
收稿日期: 2021-06-08
修回日期: 2021-07-13
网络出版日期: 2021-07-26
基金资助
国家自然科学基金(21801066); 国家自然科学基金(21525208); 国家自然科学基金(U1804283); 国家自然科学基金(21801067); 国家博士后科学基金(2020M682307); 国家博士后科学基金(2021T140183)
Rh(III)-Catalyzed Efficient Synthesis of Isocoumarins from Cyclohexanediones
Received date: 2021-06-08
Revised date: 2021-07-13
Online published: 2021-07-26
Supported by
National Natural Science Foundation of China(21801066); National Natural Science Foundation of China(21525208); National Natural Science Foundation of China(U1804283); National Natural Science Foundation of China(21801067); China Postdoctoral Science Foundation(2020M682307); China Postdoctoral Science Foundation(2021T140183)
戴雨倩 , 李兴伟 , 刘丙贤 . 三价铑催化通过环己二酮高效构建异香豆素类化合物[J]. 有机化学, 2021 , 41(11) : 4476 -4483 . DOI: 10.6023/cjoc202106017
Isocoumarin skeleton is a kind of important motif of natural product and bio-active molecular. The synthesis of simple and efficient construction of isocoumarin is of great significance. This work realized the one-pot synthesis of cyclohexanone-isocoumarins by rohdium catalyzed aryl C—H activation and followed annulation with in-situ generated iodonium ylides of cyclohexanones. Divers directing groups can be tolerated under the system leading to the desired products, among which sulfoxonium ylides and benzoic acids exhibited good reaction efficiency. Control experiments, deuterium labeling experiments and isolation of the possible intermediate revealed that the in-situ generated iodonium ylides were necessary for the reaction system.
Key words: isocoumarins; iodonium ylides; C—H activation; Rh-catalysis
[1] | (a) Schwartz, B. D.; Banwell, M. G.; Cade, I. A. Tetrahedron Lett. 2011, 52, 4526. |
[1] | (b) Yang, S.; Banwell, M. G.; Willis, A. C.; Ward, J. S. Aust. J. Chem. 2015, 68, 241. |
[1] | (c) Ibn-Ahmed, S.; Khaldi, M.; Chrétien, F.; Chapleur, Y. J. Org. Chem. 2004, 69, 6722. |
[1] | (d) Ramanan, M.; Sinha, S.; Sudarshan, K.; Aidhen, I. S.; Doble, M. Eur. J. Med. Chem. 2016, 124, 428. |
[1] | (e) Xu, X.; Li, J.; Zhang, K.; Wei, S.; Lin, R.; Polyak, S. W.; Yang, N.; Song, F. Mar. Drugs 2021, 19, 313. |
[1] | (f) Zhao, J.-Q.; Wang, Y.-M.; Wang, S.; Dang, J.; Shi, Y.-P.; Mei, L.-J.; Tao, Y.-D. Nat. Prod. Res. 2016, 30, 1746. |
[2] | Akagi, Y.; Yamada, S.; Etomi, N.; Kumamoto, T.; Nakanishi, W.; Ishikawa, T. Tetrahedron Lett. 2010, 51, 1338. |
[3] | (a) Ashraf, Z. Chem. Heterocycl. Compd. 2016, 52, 149. |
[3] | (b) Saikia, P.; Gogoi, S. Adv. Synth. Catal. 2018, 360, 2063. |
[4] | (a) Jiang, Y.; Li, P.; Zhao, J.; Liu, B.; Li, X. Org. Lett. 2020, 22, 7475. |
[4] | (b) Dong, Z.; Li, P.; Li, X.; Liu, B. Chin. J. Chem. 2021, 39, 3489. |
[5] | (a) Plunkett, S.; DeRatt, L. G.; Kuduk, S. D.; Balsells, J. Org. Lett. 2020, 22, 7662. |
[5] | (b) Bryson, T. A.; Stewart, J. J.; Gibson, J. M.; Thomas, P. S.; Berch, J. K. Green Chem. 2003, 5, 174. |
[5] | (c) Fan, X.; He, Y.; Cui, L.; Guo, S.; Wang, J.; Zhang, X. Eur. J. Org. Chem. 2012, 2012, 673. |
[5] | (d) Dong, F.; Liu, J.-Q.; Wang, X.-S. J. Heterocycl. Chem. 2019, 56, 2822. |
[6] | (a) He, X.; Han, G.; Zuo, Y.; Shang, Y. Tetrahedron 2018, 74, 7082. |
[6] | (b) Yang, C.; He, X.; Zhang, L.; Han, G.; Zuo, Y.; Shang, Y. J. Org. Chem. 2017, 82, 2081. |
[6] | (c) Li, Y.; Wang, Q.; Yang, X.; Xie, F.; Li, X. Org. Lett. 2017, 19, 3410. |
[6] | (d) Li, X. G.; Sun, M.; Liu, K.; Jin, Q.; Liu, P. N. Chem. Commun. 2015, 51, 2380. |
[6] | (e) Zuo, Y.; He, X.; Ning, Y.; Zhang, L.; Wu, Y.; Shang, Y. New J. Chem. 2018, 42, 1673 |
[6] | (f) Gao, C.; Li, B.; Geng, X.; Zhou, Q.; Zhang, X.; Fan, X. Green Chem. 2019, 21, 5113. |
[7] | (a) Mayakrishnan, S.; Tamizmani, M.; Maheswari, N. U. Chem. Commun. 2020, 56, 15462. |
[7] | (b) Jia, M.; Ma, S. Angew. Chem., Int. Ed. 2016, 55, 9134. |
[8] | Hong, C.; Jiang, X.; Yu, S.; Liu, Z.; Zhang, Y. Chin. J. Org. Chem. 2021, 41, 888. (in Chinese) |
[8] | (洪超, 蒋希程, 于书玲, 刘占祥, 张玉红, 有机化学, 2021, 41, 888.) |
[9] | (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. |
[9] | (b) Sambiagio, C.; Schonbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnurch, M. Chem. Soc. Rev. 2018, 47, 6603. |
[10] | (a) Drapeau, M. P.; Gooßen, L. J. Chem.-Eur. J. 2016, 22, 18654. |
[10] | (b) Uttry, A.; Gemmeren, M. Synthesis 2020, 52, 479. |
[11] | Benzoyl chloride could react with the solvent to form the corresponding ester. Thus C―H activation can be realized by direction of ester group. The reaction can also occur by the use of pre-syn- thesized hexafluoroisopropyl benzoate, giving the product with 26% yield. |
[12] | (a) Park, S. H.; Kim, J. Y..; Chang, S. Org. Lett. 2011, 13, 2372. |
[12] | (b) Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874. |
[12] | (c) Wang, S.-M.; Moku, B.; Leng, J.; Qin, H.-L. Eur. J. Org. Chem. 2018, 4407. |
[13] | Luo, J.; Fu, Q. Adv. Syn. Catal. 2021, 363, 3868. |
[14] | Tóth, B. L.; Monory, A.; Egyed, O.; Domján, A.; Bényei, A.; Szathury, B.; Novák, Z.; Stirling, A. Chem. Sci. 2021, 12, 5152. |
[15] | Sharma, K.; Neog, K.; Gogoi, P. Org. Lett. 2020, 22, 73. |
[16] | Jambu, S.; Jeganmohan, M. Org. Lett. 2020, 22, 5057. |
/
〈 |
|
〉 |