研究论文

钴(II)-三联吡啶配位聚合物催化的苄位直接氧化

  • 刘建奇 ,
  • 范伟伟 ,
  • 熊航行 ,
  • 江京耘 ,
  • 詹红菊
展开
  • 荆楚理工学院化工与药学院 湖北荆门 448000

收稿日期: 2021-04-14

  修回日期: 2021-06-10

  网络出版日期: 2021-08-10

基金资助

湖北省科技创新群体项目(T2020023); 荆门市科技计划(2020ZDYF002)

Benzylic Oxidation Catalyzed by Cobalt(II)-Terpyridine Coordination Polymers

  • Jianqi Liu ,
  • Weiwei Fan ,
  • Hangxing Xiong ,
  • Jingyun Jiang ,
  • Hongju Zhan
Expand
  • College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, Hubei 448000
* Corresponding author. E-mail:

Received date: 2021-04-14

  Revised date: 2021-06-10

  Online published: 2021-08-10

Supported by

Hubei Provincial Scientific and Technological Innovation Team Project(T2020023); Science and Technology Plan Project of Jingmen City(2020ZDYF002)

摘要

通过苄位C—H直接氧化制备了一系列芳香酮类化合物. 该反应体系采用钴(II)-三联吡啶配位聚合物作为催化剂, 叔丁基过氧化氢(TBHP)作为氧化剂, Na2CO3作为助催化剂, 水作为溶剂, 以较高的收率(78%~99%)制得了19种芳香酮类化合物. 该方法底物适用范围广, 具有较高的化学选择性和官能团耐受性. 通过2,2,6,6-四甲基哌啶-1-氧(TEMPO)的自由基捕获实验及对反应过程中中间体的监测, 提出了一种合理的自由基反应机理.

本文引用格式

刘建奇 , 范伟伟 , 熊航行 , 江京耘 , 詹红菊 . 钴(II)-三联吡啶配位聚合物催化的苄位直接氧化[J]. 有机化学, 2021 , 41(11) : 4409 -4414 . DOI: 10.6023/cjoc202104028

Abstract

Direct benzylic C—H oxidation for the synthesis of aromatic ketones was developed. Employing cobalt(II)-terpyridine coordination polymers as catalyst, tert-butyl hydroperoxide (TBHP) as oxidant and Na2CO3 as activator, 19 aromatic ketones were prepared with good to excellent yields (78%~99%) in water. The reaction showed a broad range of substrates with good functional group tolerance and chemical selectivity. By control experiments, a trapping experiment using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and detection of intermediates during reaction, a reasonable radical mechanism for this type of reaction was also demonstrated.

参考文献

[1]
Karimov, R. R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2018, 57, 4234.
[2]
Wu, J.; Zhu, J.; Li, H.; Wu, C.; Shen, R.; Yu, L. Chin. J. Org. Chem. 2019, 39, 3328. (in Chinese)
[2]
(吴锦雯, 朱佳雯, 李慧, 吴春雷, 沈润溥, 余乐茂, 有机化学, 2019, 39, 3328.)
[3]
Sun, Q.; Sun, W. Chin. J. Org. Chem. 2020, 40, 3686. (in Chinese)
[3]
(孙强盛, 孙伟, 有机化学, 2020, 40, 3686.)
[4]
Ren, L.; Wang, L.; Lv, Y.; Li, G.; Gao, S. Org. Lett. 2015, 17, 2078.
[5]
Ren, L.; Gao, S. Chin. J. Org. Chem. 2017, 37, 1338. (in Chinese)
[5]
(任兰会, 高爽, 有机化学, 2017, 37, 1338.)
[6]
Pieber, B.; Kappe, C. O. Green Chem. 2013, 15, 320.
[7]
Bo, C.; Bu, Q.; Li, X.; Ma, G.; Wei, D.; Guo, C.; Dai, B.; Liu, N. J. Org. Chem. 2020, 85, 4324.
[8]
Peng, H.; Lin, A.; Zhang, Y.; Jiang, H.; Zhou, J.; Cheng, Y.; Zhu, C.; Hu, H. ACS Catal. 2012, 2, 163.
[9]
Li, H.; Li, Z.; Shi, Z. Tetrahedron 2009, 65, 1856.
[10]
Sterckx, H.; De Houwer, J.; Mensch, C.; Caretti, I.; Tehrani, K. A.; Herrebout, W. A.; Van Doorslaer, S.; Maes, B. U. W. Chem. Sci. 2016, 7, 346.
[11]
Hruszkewycz, D. P.; Miles, K. C.; Thiel, O. R.; Stahl, S. S. Chem. Sci. 2017, 8, 1282.
[12]
Miao, C.; Zhao, H.; Zhao, Q.; Xia, C.; Sun, W. Catal. Sci. Technol. 2016, 6, 1378.
[13]
Liu, P.; Liu, Y.; Wong, E. L.; Xiang, S.; Che, C. Chem. Sci. 2011, 2, 2187.
[14]
Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108.
[15]
Talsi, E. P.; Samsonenko, D. G.; Ottenbacher, R. V.; Bryliakov, K. P. ChemCatChem 2017, 9, 4580.
[16]
Urgoitia, G.; Sanmartin, R.; Herrero, M. T.; Domínguez, E. Chem. Commun. 2015, 51, 4799.
[17]
Yamazaki, S. Org. Lett. 1999, 1, 2129.
[18]
Muthupandi, P.; Sekar, G. Tetrahedron Lett. 2011, 52, 692.
[19]
Xia, J.; Cormier, K. W.; Chen, C. Chem. Sci. 2012, 3, 2240.
[20]
Jeong, Y.; Moon, Y.; Hong, S. Org. Lett. 2015, 17, 3252.
[21]
Li, P.; Wang, Y.; Wang, X.; Wang, Y.; Liu, Y.; Huang, K.; Hu, J.; Duan, L.; Hu, C.; Liu, J. J. Org. Chem. 2020, 85, 3101.
[22]
Yang, G.; Zhang, Q.; Miao, H.; Tong, X.; Xu, J. Org. Lett. 2005, 7, 263.
[23]
Alanthadka, A.; Devi, E. S.; Nagarajan, S.; Sridharan, V.; Suvitha, A.; Maheswari, C. U. Eur. J. Org. Chem. 2016, 2016, 4872.
[24]
Zhang, J.; Wang, Z.; Wang, Y.; Wan, C.; Zheng, X.; Wang, Z. Green Chem. 2009, 11, 1973.
[25]
Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414.
[26]
Yin, L.; Wu, J.; Xiao, J.; Cao, S. Tetrahedron Lett. 2012, 53, 4418.
[27]
Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437.
[28]
Waffel, D.; Alkan, B.; Fu, Q.; Chen, Y.; Schmidt, S.; Schulz, C.; Wiggers, H.; Muhler, M.; Peng, B. ChemPlusChem 2019, 84, 1155.
[29]
Zhang, G.; Zeng, H.; Li, S.; Johnson, J.; Mo, Z.; Neary, M. C.; Zheng, S. Dalton Trans. 2020, 49, 2610.
[30]
Zhang, G.; Li, S.; Wu, J.; Zeng, H.; Mo, Z.; Davis, K.; Zheng, S. Org. Chem. Front. 2019, 6, 3228.
[31]
Fan, W.; Li, L.; Zhang, G. J. Org. Chem. 2019, 84, 5987.
[32]
Zhang, G.; Wu, J.; Li, S.; Cass, S.; Zheng, S. Org. Lett. 2018, 20, 7893.
[33]
Wu, J.; Zeng, H.; Cheng, J.; Zheng, S.; Golen, J. A.; Manke, D. R.; Zhang, G. J. Org. Chem. 2018, 83, 9442.
[34]
Tan, J.; Zheng, T.; Yu, Y.; Xu, K. RSC Adv. 2017, 7, 15176.
[35]
Zhang, Z.; Li, J.; Yao, Y.; Sun, S. Cryst. Growth Des. 2015, 15, 5028.
[36]
Azarkamanzad, Z.; Farzaneh, F.; Maghami, M.; Simpson, J. New J. Chem. 2019, 43, 12020.
[37]
Han, X.; Zhou, Z.; Wan, C.; Xiao, Y.; Qin, Z. Synthesis 2013, 45, 615.
[38]
Zhang, J.; Biradar, A. V.; Pramanik, S.; Emge, T. J.; Asefa, T.; Li, J. Chem. Commun. 2012, 48, 6541.
[39]
Asgharpour, Z.; Farzaneh, F.; Abbasi, A. RSC Adv. 2016, 6, 95729.
[40]
Bryant, J. R.; Mayer, J. M. J. Am. Chem. Soc. 2003, 125, 10351.
[41]
Wang, T.; Jing, X.; Chen, C.; Yu, L. J. Org. Chem. 2017, 82, 9342.
[42]
Cheng, K.; Zhao, B.; Qi, C. RSC Adv. 2014, 4, 48698.
[43]
Li, L.; Liu, Z.; Tang, S.; Li, J.; Ren, X.; Yang, G.; Li, H.; Yuan, B. Catal. Commun. 2019, 127, 34.
[44]
Zhang, X.; Ji, X.; Su, R.; Weeks, B. L.; Zhang, Z.; Deng, S. ChemPlusChem 2013, 78, 703.
文章导航

/