综述与进展

芳基偶氮砜的芳基化及砜基化研究进展

  • 孟娜 ,
  • 刘启顺 ,
  • 刘瑞生 ,
  • 吕玉芬 ,
  • 赵晓辉 ,
  • 魏伟
展开
  • a 曲阜师范大学化学与化工学院 山东曲阜 273165
    b 中国科学院西北高原生物研究所 中国科学院藏药研究重点实验室 青海西宁 810008
† 共同第一作者

收稿日期: 2021-07-07

  修回日期: 2021-07-29

  网络出版日期: 2021-08-10

基金资助

山东省高校青创科技计划(2019KJC021); 2018中国科学院“西部之光”人才培养引进计划资助项目

Recent Advances in Arylations and Sulfonylations of Arylazo Sulfones

  • Na Meng ,
  • Qishun Liu ,
  • Ruisheng Liu ,
  • Yufen Lü ,
  • Xiaohui Zhao ,
  • Wei Wei
Expand
  • a School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165
    b Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-07-07

  Revised date: 2021-07-29

  Online published: 2021-08-10

Supported by

Youth Innovation and Technology Project of Higher School in Shandong Province(2019KJC021); 2018 CAS "Light of West China" Program

摘要

芳基和砜基化合物在合成化学、药物化学、材料化学等领域具有广泛的应用价值. 因此, 其清洁、高效的构建方法备受人们的关注. 芳基偶氮砜在光、电或热条件下可以发生C—N和S—N键均裂, 产生芳基和砜基自由基, 进而发生芳基化或砜基化反应选择性构建芳基或砜基化合物. 归纳总结了近年来芳基偶氮砜参与的芳基化及砜基化反应最新研究进展, 重点介绍了其合成方法及反应机理, 并对该领域的未来发展进行了展望.

本文引用格式

孟娜 , 刘启顺 , 刘瑞生 , 吕玉芬 , 赵晓辉 , 魏伟 . 芳基偶氮砜的芳基化及砜基化研究进展[J]. 有机化学, 2021 , 41(12) : 4639 -4650 . DOI: 10.6023/cjoc202107022

Abstract

Aromatic ring- and sulfone-containing compounds are widely used in the fields of synthetic chemistry, medicinal chemistry and material chemistry. Therefore, it is of great significance to develop a simple, green and efficient method to construct aryl and sulfonyl compounds. Arylazo sulfones can be used as arylation or sulfonylation reagents to access aryl and sulfonyl compounds via hemolytic cleavage of C—N and N—S bonds to generate aryl radical and sulfonyl radical. In this review, the recent research progress of arylations and sulfonylations using arylazo sulfones is summarized. The synthetic methods and the related reaction mechanisms are highlighted, and an outlook of this research field is also given.

参考文献

[1]
(a) Hanson, J. R. Nat. Prod. Rep. 1995, 12, 381.
[1]
(b) Tietze, L. F.; Raschke, T. Synlett 1995, 597.
[2]
(a) Shiotani, S.; Kometani, T.; Mitsuhashi, K.; Nozawa, T.; Kurobe, A.; Futsukaichi, O. J. Med. Chem. 1976, 19, 803.
[2]
(b) Smethurst, P. W. R.; Forrest, W. H.; Hayden, J. Br. J. Anaesth. 1971, 43, 1129.
[3]
(a) Roll, D. M.; Scheuer, P. J.; Matsumoto, G. K.; Clardy, J. J. Am. Chem. Soc. 1983, 105, 6177.
[3]
(b) Yano, H.; Nakanishi, S. J. Biol. Chem. 1993, 268, 25846.
[4]
Yuan, Z. Z.; Dai, Q.; Qiao, L.; Zhao, Y. Y.; Zhang, H. M.; Li, X. F. J. Membr. Sci. 2017, 541, 465.
[5]
(a) Mack, D. J.; Njardarson, J. T. Angew. Chem., Int. Ed. 2013, 52, 1543.
[5]
(b) Wang, N. Z.; Saidhareddy, P.; Jiang, X. F. Nat. Prod. Rep. 2020, 37, 246.
[6]
Yazdanyar, S.; Boer, J.; Ingvarsson, G.; Szepietowski, J. C.; Jemec, G. B. E. Dermatology 2011, 222, 342.
[7]
Li, P.; Hu, D. Y.; Xie, D. D.; Chen, J. X.; Jin, L. H.; Song, B. A. J. Agric. Food Chem. 2018, 66, 3093.
[8]
(a) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Rooney, C. S.; Balani, S. K.; Condra, J. H.; Emini, E. A.; Goldman, M. E.; Greenlee, W. J. J. Med. Chem. 1993, 36, 1291.
[8]
(b) Artico, M.; Silvestri, R.; Massa, S.; Loi, A. G.; Corrias, S.; Piras, G.; Colla, P. L. J. Med. Chem. 1996, 39, 522.
[9]
Kamigta, N.; Kobayashi, M. Sulfur Rep. 1982, 2, 87.
[10]
(a) Kice, J. L.; Gabrielsen, R. S. J. Org. Chem. 1970, 35, 1004.
[10]
(b) Kobayashi, M.; Gotoh, M.; Minato, H. J. Org. Chem. 1975, 40, 140.
[10]
(c) Evers, M. J.; Christiaens, L. E.; Guillaume, M. R.; Renson, M. J. J. Org. Chem. 1985, 50, 1779.
[10]
(d) Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 897.
[10]
(e) Qiu, D.; Lian, C.; Mao, J.; Fagnoni, M.; Protti, S. J. Org. Chem. 2020, 85, 12813.
[11]
(a) Gaikwad, D. S.; Pore, D. M. Synlett 2012, 23, 2631.
[11]
(b) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189. (in Chinese)
[11]
( 王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
[12]
(a) Shen, Q. L.; Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 6586.
[12]
(b) Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2013, 15, 67.
[12]
(c) Prades, A.; Poyatos, M.; Peris, E. Adv. Synth. Catal. 2010, 352, 1155.
[13]
(a) Rao Volla, C. M.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305.
[13]
(b) Zeng, X. M.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 17638.
[14]
(a) Duong, H. A.; Gilligan, R. E.; Cooke, M. L.; Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463.
[14]
(b) Vásquez-Céspedes, S.; Holtkamp, M.; Karst, U.; Glorius, F. Synlett 2017, 28, 2759.
[15]
(a) Kumar, M. R.; Park, K.; Lee, S. Adv. Synth. Catal. 2010, 352, 3255.
[15]
(b) Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2003, 5, 2911.
[16]
(a) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Chem. Soc. Rev. 2016, 45, 2044.
[16]
(b) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[16]
(c) He, W.-B.; Gao, L.-Q.; Chen, X.-J.; Wu, Z.-L.; Huang, Y.; Cao, Z.; Xu, X.-H.; He, W.-M. Chin. Chem. Lett. 2020, 31, 1895.
[16]
(d) Liu, Q.; Wang, L.; Yue, H.; Li, J.-S.; Luo, Z.; Wei, W. Green Chem. 2019, 21, 1609.
[16]
(e) Gan, Z.; Li, G.; Yang, X.; Yan, Q.; Xu, G.; Li, G.; Jiang, Y.-Y.; Yang, D. Sci. China: Chem. 2020, 63, 1652.
[16]
(f) Chen, J.-R.; Yan, D.-M.; Wei, Q.; Xiao, W.-J. ChemPhotoChem 2017, 1, 148.
[16]
(g) Liu, R.; Liu, Q.; Meng, H.; Ding, H.; Hao, J.; Ji, Z.; Yue, H.; Wei, W. Org. Chem. Front. 2021, 8, 1970.
[16]
(h) Ye, H.; Xiao, C.; Lu, L. Chin. J. Org. Chem. 2018, 38, 1897. (in Chinese)
[16]
( 叶辉, 肖聪, 陆良秋, 有机化学, 2018, 38, 1897.)
[17]
Crespi, S.; Protti, S.; Fagnoni, M. J. Org. Chem. 2016, 81, 9612.
[18]
Dossena, A.; Sampaolesi, S.; Palmieri, A.; Protti, S.; Fagnoni, M. J. Org. Chem. 2017, 82, 10687.
[19]
Sauer, C.; Liu, Y.; Nisi, A. D.; Protti, S.; Fagnoni, M.; Bandini, M. ChemCatChem 2017, 9, 4456.
[20]
Malacarne, M.; Protti, S.; Fagnoni, M. Adv. Synth. Catal. 2017, 359, 3826.
[21]
Onuigbo, L.; Raviola, C.; Fonzo, A. D.; Protti, S.; Fagnoni, M. Eur. J. Org. Chem. 2018, 2018, 5297.
[22]
Xu, Y. L.; Yang, X. Y.; Fang, H. J. Org. Chem. 2018, 83, 12831.
[23]
(a) Lawrence, D. S.; Copper, J. E.; Smith, C. D. J. Med. Chem. 2001, 44, 594.
[23]
(b) Willardsen, J. A.; Dudley, D. A.; Cody, W. L.; Chi, L.; McClanahan, T. B.; Mertz, T. E.; Potoczak, R. E.; Narasimhan, L. S.; Holland, D. R.; Rapundalo, S. T.; Edmunds, J. J. J. Med. Chem. 2004, 47, 4089.
[23]
(c) Galal, S. A.; Khairat, S. H. M.; Ragab, F. A. F.; Abdelsamie, A. S.; Ali, M. M.; Soliman, S. M.; Mortier, J.; Wolber, G.; El Diwani, H. I. Eur. J. Med. Chem. 2014, 86, 122.
[24]
(a) Yuan, J.; Zhu, J.; Fu, J.; Yang, L.; Xiao, Y.; Mao, P.; Dua, X.; Qu, L. Org. Chem. Front. 2019, 6, 925.
[24]
(b) Wei, W.; Wang, L.; Bao, P.; Shao, Y.; Yue, H.; Yang, D.; Yang, X.; Zhao, X.; Wang, H. Org. Lett. 2018, 20, 7125.
[24]
(d) Meng, N.; Lü, Y.; Liu, Q.; Liu, R.; Zhao, X.; Wei, W. Chin. Chem. Lett. 2021, 32, 258.
[24]
(e) Bao, P.; Liu, F.; Lü, Y.; Yue, H.; Li, J.-S.; Wei, W. Org. Chem. Front. 2020, 7, 492.
[24]
(h) Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
[24]
( 时建伟, 魏伟, 有机化学, 2020, 40, 2170.)
[25]
Jung, H. I.; Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2018, 39, 1003.
[26]
Lian, C.; Yue, G. L.; Mao, J. S.; Liu, D. Y.; Ding, Y.; Liu, Z. R.; Qiu, D.; Zhao, X.; Lu, K.; Fagnoni, M.; Protti, S. Org. Lett. 2019, 21, 5187.
[27]
Qiu, D.; Lian, C.; Mao, J. S.; Ding, Y.; Liu, Z. R.; Wei, L. Y.; Fagnoni, M.; Protti, S. Adv. Synth. Catal. 2019, 361, 5239.
[28]
Liu, Q. S.; Wang, L. L.; Yue, H. L.; Li, J. S.; Luo, Z. D.; Wei, W. Green Chem. 2019, 21, 1609.
[29]
(a) Zhang, L.; Niu, C.; Yang, X.; Qin, H.; Yang, J.; Wen, J.; Wang, H. Chin. J. Org. Chem. 2020, 40, 1117. (in Chinese)
[29]
( 张龙菲, 牛聪, 杨晓婷, 秦宏云, 杨建静, 文江伟, 王桦, 有机化学, 2020, 40, 1117.)
[29]
(b) Feng, E.; Hou, Z.; Xu, H. Chin. J. Org. Chem. 2019, 39, 1424. (in Chinese)
[29]
( 冯恩祺, 侯中伟, 徐海超, 有机化学, 2019, 39, 1424.)
[29]
(c) Li, M.; Wang, R.; Hao, W.; Jiang, B. Chin. J. Org. Chem. 2020, 40, 1540. (in Chinese)
[29]
( 李梦帆, 王榕, 郝文娟, 姜波, 有机化学, 2019, 39, 1540.)
[29]
(d) Meng, W.; Xu, K.; Guo, B.; Zeng, C. Chin. J. Org. Chem. 2021, 41, 2621. (in Chinese)
[29]
( 孟薇, 徐坤, 郭兵兵, 曾程初, 有机化学, 2021, 41, 2621.)
[29]
(e) Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950.
[29]
(f) Chen, J.-Y.; Zhong, C.-T.; Gui, Q.-W.; Zhou, Y.-M.; Fang, Y.-Y.; Liu, K.-J.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 475.
[30]
Wang, R. K.; Chen, F. M.; Jiang, L. Q.; Yi, W. B. Adv. Synth. Catal. 2020, 363, 1904.
[31]
(a) Li, Y.; Wan, J.-P. Chin. J. Org. Chem. 2020, 40, 3889. (in Chinese)
[31]
( 李毅, 万结平, 有机化学, 2020, 40, 3889.)
[31]
(b) Liu, Q.; Lü, Y.; Liu, R.; Zhao, X.; Wang, J.; Wei, W. Chin. Chem. Lett. 2021, 32, 136.
[31]
(c) Bao, W.-H.; Wang, Z.; Tang, X.; Zhang, Y.-F.; Tan, J.-X.; Zhu, Q.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2259.
[31]
(d) Lia, G.-H.; Han, Q.-Q.; Sun, Y.-Y.; Chen, D.-M.; Wang, Z.-L.; Xu, X.-M.; Yu, X.-Y. Chin. Chem. Lett. 2020, 31, 3255.
[31]
(e) Wang, L.; Zhang, M.; Zhang, Y.; Liu, Q.; Zhao, X.; Li, J.-S.; Luo, Z.; Wei, W. Chin. Chem. Lett. 2020, 31, 67.
[32]
Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49, 10239.
[33]
Liu, Q. S.; Liu, F.; Yue, H. L.; Zhao, X. H.; Li, J. S.; Wei, W. Adv. Synth. Catal. 2019, 361, 5277.
[34]
Lü, Y. F.; Liu, Q. S.; Liu, F.; Yue, H. L.; Li, J. S.; Wei, W. Tetrahedron Lett. 2020, 61, 151335.
[35]
Chawla, R.; Jaiswal, S.; Dutta, P. K.; Yadav, L. D. S. Tetrahedron Lett. 2020, 61, 151898.
[36]
Liu, Q. S.; Lü, Y. F.; Liu, R. S.; Zhao, X. H.; Wang, J. W.; Wei, W. Chin. Chem. Lett. 2021, 32, 136.
文章导航

/