研究论文

铁(0)促进的醛与溴代硝基甲烷的Henry型反应高效合成2-硝基-1-醇

  • 张斯旋 ,
  • 李祥瑞 ,
  • 李文欣 ,
  • 饶卫东 ,
  • 葛丹华 ,
  • 沈志良 ,
  • 褚雪强
展开
  • a 南京工业大学化学与分子工程学院 先进化学制造研究院 化学实验教学中心 南京 211816
    b 南京林业大学化工学院 江苏省生物质绿色燃料与化学品重点实验室 南京 210037
† 共同第一作者.

收稿日期: 2021-07-23

  修回日期: 2021-08-27

  网络出版日期: 2021-08-29

基金资助

南京工业大学科研启动基金(39837118); 南京工业大学科研启动基金(39837146); 国家自然科学基金(22001121); 江苏省自然科学基金(BK20180690)

Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols

  • Sixuan Zhang ,
  • Xiangrui Li ,
  • Wenxin Li ,
  • Weidong Rao ,
  • Danhua Ge ,
  • Zhiliang Shen ,
  • Xueqiang Chu
Expand
  • a Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816
    b Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 21003
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-07-23

  Revised date: 2021-08-27

  Online published: 2021-08-29

Supported by

Nanjing Tech University(39837146); National Natural Science Foundation of China(22001121); Natural Science Foundation of Jiangsu Province(BK20180690)

摘要

以廉价易得、商品化的铁粉为反应促进剂, 研究了溴代硝基甲烷与各种醛的Henry型反应, 高效地合成了2-硝基-1-醇. 该反应在PbCl2和四丁基硫酸氢铵(TBAHS)存在下有效地进行, 以中等至良好的产率得到目标产物, 并且该反应具有广泛的官能团耐受性.

本文引用格式

张斯旋 , 李祥瑞 , 李文欣 , 饶卫东 , 葛丹华 , 沈志良 , 褚雪强 . 铁(0)促进的醛与溴代硝基甲烷的Henry型反应高效合成2-硝基-1-醇[J]. 有机化学, 2022 , 42(1) : 235 -241 . DOI: 10.6023/cjoc202107048

Abstract

The Henry-type reaction of bromonitromethane with various aldehydes for the efficient synthesis of 2-nitro-alkan- 1-ols by using inexpensive and commercial iron powder as reaction mediator was developed. The reaction proceeded efficiently in the presence of PbCl2 and tetrabutylammonium hydrogen sulfate (TBAHS) to produce the desired products in moderate to good yield with wide functional group tolerance.

参考文献

[1]
(a) Ono, N. In The Nitro Group in Organic Synthesis, Wiley-VCH, New York, 2001, p. 30.
[1]
(b) Norman, B. H.; Morris, M. L. Tetrahedron Lett. 1992, 33, 6803.
[1]
(c) Kawabata, T.; Kiryu, Y.; Sugiure, Y.; Fuji, K. Tetrahedron Lett. 1993, 34, 5127.
[1]
(d) Sasai, H.; Kim, W.-S.; Suzuki, T.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 6123.
[1]
(e) Corey, E. J.; Zhang, F.-Y. Angew. Chem. Int. Ed. 1999, 38, 1931.
[1]
(f) Grembecka, J.; Kafarski, P. Mini Rev. Med. Chem. 2001, 1, 133.
[2]
Henry, L. Bull. Soc. Chim. Fr. 1895, 13, 999.
[3]
(a) Rosini, G.; Ballini, R. Synthesis 1988, 833.
[3]
(b) Shvekhgeimer, M. A. Russ. Chem. Rev. 1998, 67, 35.
[3]
(c) Luzzio, F. A. Tetrahedron 2001, 57, 915.
[4]
(a) Concellon, J. M.; Rodriguez-Solla, H.; Concellon, C.; Garcia-Granda, S.; Diaz, M. R. Org. Lett. 2006, 8, 5979.
[4]
(b) Alcaide, B.; Almendros, P.; Luna, A.; Torres, M. R. Org. Biomol. Chem. 2008, 6, 1635.
[4]
(c) Blay, G.; Hernandez-Olmos, V.; Pedro, J. R. Chem. Commun. 2008, 4840.
[4]
(d) Leighty, M. W.; Shen, B.; Johnston, J. N. J. Am. Chem. Soc. 2012, 134, 15233.
[4]
(e) Mao, P.; Yang, L.; Xiao, Y.; Yuan, J.; Mai, W.; Gao, J.; Zhang, X. Chin. J. Org. Chem. 2019, 39, 443.
[4]
(f) Hu, Z.; Jiang, G.; Zhu, Z. Gong, B.; Xie, Z.; Le, Z. Chin. J. Org. Chem. 2021, 41, 325.
[5]
Concellon, J. M.; Rodriguez-Solla, H.; Concellon, C. J. Org. Chem. 2006, 71, 7919.
[6]
(a) Soengas, R. G.; Estévez, A. M. Eur. J. Org. Chem. 2010, 5190.
[6]
(b) Soengas, R. G.; Estévez, A. M. Synlett 2010, 2625.
[6]
(c) Soengas, R. G.; Estévez, A. M. Tetrahedron Lett. 2012, 53, 570.
[7]
Soengas, R. G.; Silva, A. M. S. Synlett 2012, 873.
[8]
Mahasneh, A. S. Z. Naturforsch. 2005, 60b, 416.
[9]
(a) Liu, Y.; Lu, Y.; Prashad, M.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 217.
[9]
(b) Gao, G.; Tao, Y.; Jiang, J. Green Chem. 2008, 10, 439.
[9]
(c) Dey, R.; Mukherjee, N.; Ahammed, S.; Ranu, B. C. Chem. Commun. 2012, 48, 7982.
[9]
(d) Liu, X.-Y.; Cheng, B.-Q.; Guo, Y.-C.; Chu, X.-Q.; Rao, W.; Loh, T.-P.; Shen, Z.-L. Org. Chem. Front. 2019, 6, 1581.
[9]
(e) Liu, X.-Y.; Li, X.-R.; Zhang, C.; Chu, X.-Q.; Rao, W.; Loh, T.-P.; Shen, Z.-L. Org. Lett. 2019, 21, 5873.
[9]
(f) Chan, T. C.; Lau, C. P.; Chan, T. H. Tetrahedron Lett. 2004, 45, 4189.
[10]
(a) Blümke, T. D.; Chen, Y.-H.; Peng, Z.; Knochel, P. Nat. Chem. 2010, 2, 313.
[10]
(b) Chen, B.-Z.; Wang, C.-X.; Jing, Z.-H.; Chu, X.-Q.; Loh, T.-P.; Shen, Z.-L. Org. Chem. Front. 2019, 6, 313.
[11]
(a) Blümke, T. D.; Klatt, T.; Koszinowski, K.; Knochel, P. Angew. Chem. Int. Ed. 2012, 51, 9926.
[11]
(b) Takai, K.; Ikawa, Y. Org. Lett. 2002, 4, 1727.
[11]
(c) Yun, J.-J.; Zhi, M.-L.; Shi, W.-X.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P. Adv. Synth. Catal. 2018, 360, 2632.
[11]
(d) Shen, L.; Zhao, K.; Doitomi, K.; Ganguly, R.; Li, Y.-X.; Shen, Z.-L.; Hirao, H.; Loh, T.-P. J. Am. Chem. Soc. 2017, 139, 13570.
[12]
(a) Ollevier, T. Org. Biomol. Chem. 2013, 11, 2740.
[12]
(b) Wu, Z.; Feng, X.-X.; Wang, Q.-D.; Yun, J.-J.; Rao, W.; Yang, J.-M.; Shen, Z.-L. Chin. Chem. Lett. 2020, 31, 1297.
[13]
(a) Chen, C.; Liu, P.; Luo, M.; Zeng, X. ACS Catal. 2018, 8, 5864.
[13]
(b) Li, Y.; Deng, G.; Zeng, X. Organometallics 2016, 35, 747.
[13]
(c) Yun, J.-J.; Liu, X.-Y.; Deng, W.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P. J. Org. Chem. 2018, 83, 10898.
[14]
(a) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 3317.
[14]
(b) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
[14]
(c) Xiong, H.; Ramkumar, N.; Chiou, M.-F.; Jian, W.; Li, Y.; Su, J.-H.; Zhang, X.; Bao, H. Nat. Commun. 2019, 10, 122.
[14]
(d) Wei, R.; Xiong, H.; Ye, C.; Li, Y.; Bao, H. Org. Lett. 2020, 22, 3195.
[14]
(e) Deng, W.; Ye, C.; Li, Y.; Li, D.; Bao, H. Org. Lett. 2019, 21, 261.
[14]
(f) He, Z.; Fan, M.; Xu, J.; Hu, Y.; Wang, L.; Wu, X.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2019, 39, 3438.
[15]
(a) Takai, K.; Kakiuchi, T.; Utimoto, K. J. Org. Chem. 1994, 59, 2671.
[15]
(b) Cheng, B.-Q.; Zhao, S.-W.; Song, X.-D.; Chu, X.-Q.; Rao, W.; Loh, T.-P.; Shen, Z.-L. J. Org. Chem. 2019, 84, 5348.
[16]
(a) Cheng, B.-Q.; Zhang, S.-X.; Cui, Y.-Y.; Chu, X.-Q.; Rao, W.; Xu, H.; Han, G.-Z.; Shen, Z.-L. Org. Lett. 2020, 22, 5456.
[16]
(b) Chu, X.-Q.; Cheng, B.-Q.; Zhang, Y.-W.; Ge, D.; Shen, Z.-L.; Loh, T.-P. Chem. Commun. 2018, 54, 2615.
[16]
(c) Wang, P.; Chen, B.-Z.; Guo, Y.-C.; Rao, W.; Shen, Z.-L. Tetrahedron Lett. 2019, 60, 151288.
[16]
(d) Wu, L.-H.; Zhao, K.; Shen, Z.-L.; Loh, T.-P. Org. Chem. Front. 2017, 4, 1872.
[16]
(e) Liu, B.; Xu, X.; Huang, L.; Feng, H. Chin. J. Org. Chem. 2020, 40, 1290.
[16]
(f) Huang, S.; Nie, Y.; Yang, J.; Zheng, Z.; Cao, J.; Xu, Z.; Xu, L. Chin. J. Org. Chem. 2020, 40, 2018.
[17]
Wu, Z.; Feng, X.-X.; Wang, Q.-D.; Liu, X.-Y.; Rao, W.; Yang, J.-M.; Shen, Z.-L. Chin. Chem. Lett. 2020, 31, 391.
[18]
(a) Chen, B.-Z.; Zhi, M.-L.; Wang, C.-X.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P. Org. Lett. 2018, 20, 1902.
[18]
(b) Liu, X.-Y.; Cheng, B.-Q.; Guo, Y.-C.; Chu, X.-Q.; Li, Y.-X.; Loh, T.-P.; Shen, Z.-L. Adv. Synth. Catal. 2019, 361, 542.
[19]
(a) Tay, N. E. S.; Chen, W.; Levens, A.; Pistritto, V. A.; Huang, Z.; Wu, Z.; Li, Z.; Nicewicz, D. A. Nat. Catal. 2020, 3, 734.
[19]
(b) Bhattacharyya, A.; Kavitha, C. V.; Ghorai, M. K.; J. Org. Chem. 2016, 81, 643.
[19]
(c) Kirihara, M.; Osugi, R.; Saito, K.; Adachi, K.; Yamazaki, K.; Matsushima, R.; Kimura, Y. J. Org. Chem. 2019, 84, 8330.
文章导航

/