基于DIC/Oxyma的蜘蛛毒素多肽GsMTx4的高效合成及活性评价
收稿日期: 2021-09-01
修回日期: 2021-09-21
网络出版日期: 2021-10-21
基金资助
国家自然科学基金(21807063); 国家自然科学基金(82003647); 国家自然科学基金(22177058); 中国博士后科学基金(2019M652307); 中国博士后科学基金(2020T130332); 山东省自然科学基金(ZR2019BH045); 山东省自然科学基金(ZR2020QH100)
DIC/Oxyma Based Efficient Synthesis and Activity Evaluation of Spider Peptide Toxin GsMTx4
Received date: 2021-09-01
Revised date: 2021-09-21
Online published: 2021-10-21
Supported by
National Natural Science Foundation of China(21807063); National Natural Science Foundation of China(82003647); National Natural Science Foundation of China(22177058); China Postdoctoral Science Foundation(2019M652307); China Postdoctoral Science Foundation(2020T130332); Natural Science Foundation of Shandong Province(ZR2019BH045); Natural Science Foundation of Shandong Province(ZR2020QH100)
偶联试剂介导酰胺键形成, 在固相多肽合成中发挥关键作用. 新型DIC (N,N-二异丙基碳二亚胺)/Oxyma (2-肟氰乙酸乙酯)缩合体系具有廉价、操作安全、缩合效率高和抑制消旋等优势, 在手动和自动多肽合成中得到广泛应用. 但是, DIC/Oxyma缩合体系的理想反应比例和温和反应温度尚有待探索. Piezo通道是一种多功能的机械敏感阳离子通道, 与多种遗传性疾病相关, 蜘蛛毒素多肽GsMTx4是目前唯一的特异性靶向Piezo通道的抑制剂. 本研究探索了DIC/Oxyma缩合体系在温和条件下的最佳反应比例, 实现了线性GsMTx4的高效手动固相合成. 通过一次氧化折叠策略构建三对二硫键, 得到活性的GsMTx4. 利用圆二色谱和膜片钳技术等评价GsMTx4的结构和活性. 本工作建立了基于DIC/Oxyma缩合体系的快速、稳健和安全的合成方法, 为固相多肽合成特别是手动固相多肽合成提供了重要方法参考.
马艳楠 , 刘雅妮 , 王金艳 , 陈西同 , 尹昊 , 迟巧娜 , 贾世玺 , 杜姗姗 , 齐昀坤 , 王克威 . 基于DIC/Oxyma的蜘蛛毒素多肽GsMTx4的高效合成及活性评价[J]. 有机化学, 2022 , 42(2) : 498 -506 . DOI: 10.6023/cjoc202109003
Coupling reagents mediate the formation of amide bonds and play a key role in solid phase peptide synthesis. The novel N,N-diisopropylcarbodiimide (DIC)/ethyl cyanoglyoxylate-2-oxime (Oxyma) condensation system has the advantages of low cost, operational safety, higher coupling efficiency and lower rate of racemization. The DIC/Oxyma condensation system has been widely used in manual and automated synthesis of peptides. However, the ideal reaction ratio in DIC/Oxyma condensation system at mild reaction temperature remains to be further investigated. GsMTx4 is a cysteine rich peptide toxin identified from the venom of Grammostola spatulata spider, which consists of 34 amino acid residues and three pairs of disulfide bonds. GsMTx4 is the only inhibitor specifically targeting piezo channel, which is a multifunctional mechanically sensitive cation channel and associated with a variety of hereditary diseases. Herein, the synthetic efficiencies of different reaction ratios of DIC and Oxyma at moderate reaction temperature were systematically evaluated. The efficiency and robustness of DIC/Oxyma condensation system were validated by the rapid manual synthesis of linear GsMTx4. The one-step oxidative folding strategy was applied for the construction of three pairs of disulfide bridges, affording the active GsMTx4. The circular dichroism and patch-clamp electrophysiology tests were conducted to evaluate the structure and activity of synthetic GsMTx4. In summary, a fast, robust and safe synthetic method based on DIC/Oxyma is established, which is particularly useful for the manual synthesis of peptides.
Key words: DIC; Oxyma; solid phase peptide synthesis; disulfide bond; oxidative folding; GsMTx4; peptide toxin
[1] | (a) Liu, T.; Xu, S. L.; Zhao, J. F. Chin. J. Org. Chem. 2021, 41, 873. (in Chinese) |
[1] | ( 刘涛, 许泗林, 赵军锋, 有机化学, 2021, 41, 873.) |
[1] | (b) Luan, X.; Wu, Y.; Shen, Y. W.; Zhang, H.; Zhou, Y. D.; Chen, H. Z.; Nagle, D. G.; Zhang, W. D. Nat. Prod. Rep. 2021, 38, 7. |
[1] | (c) Zhai, C.; Schreiber, C. L.; Padilla-Coley, S.; Oliver, A. G.; Smith, B. D. Angew. Chem., Int. Ed. 2020, 59, 23740. |
[1] | (d) Zhou, X. M.; Zuo, C.; Li, W. Q.; Shi, W. W.; Zhou, X. W.; Wang, H. F.; Chen, S. M.; Du, J. F.; Chen, G. Y.; Zhai, W. J.; Zhao, W. S.; Wu, Y. H.; Qi, Y. M.; Liu, L.; Gao, Y. F. Angew. Chem., Int. Ed. 2020, 59, 15114. |
[1] | (e) Chang, H. N.; Liu, B. Y.; Qi, Y. K.; Zhou, Y.; Chen, Y. P.; Pan, K. M.; Li, W. W.; Zhou, X. M.; Ma, W. W.; Fu, C. Y.; Qi, Y. M.; Liu, L.; Gao, Y. F. Angew. Chem., Int. Ed. 2015, 54, 11760. |
[1] | (f) Vinogradov, A. A.; Yin, Y.; Suga, H. J. Am. Chem. Soc. 2019, 141, 4167. |
[1] | (g) Uppalapati, M.; Lee, D. J.; Mandal, K.; Li, H.; Miranda, L. P.; Lowitz, J.; Kenney, J.; Adams, J. J.; Ault-Riche, D.; Kent, S. B.; Sidhu, S. S. ACS Chem. Biol. 2016, 11, 1058. |
[1] | (h) Silva, O. N.; Torres, M. D. T.; Cao, J.; Alves, E. S. F.; Rodrigues, L. V.; Resende, J. M.; Liao, L. M.; Porto, W. F.; Fensterseifer, I. C. M.; Lu, T. K.; Franco, O. L.; de la Fuente-Nunez, C. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26936. |
[2] | (a) Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L. Nat. Protoc. 2013, 8, 2483. |
[2] | (b) Sgorbati, C.; Lo Presti, E.; Bergamaschi, G.; Sani, M.; Volonterio, A. J. Org. Chem. 2021, 86, 9225. |
[2] | (c) Kim, H. S.; Lee, Y.; Shin, M. H.; Lim, H. S. Chem. Commun. 2021, 57, 6800. |
[2] | (d) Suzuki, R.; Konno, H. Org. Lett. 2020, 22, 3309. |
[2] | (e) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338. |
[2] | (f) Akondi, K. B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D. J.; Lewis, R. J.; Alewood, P. F. Chem. Rev. 2014, 114, 5815. |
[2] | (g) Cui, H. K.; Guo, Y.; He, Y.; Wang, F. L.; Chang, H. N.; Wang, Y. J.; Wu, F. M.; Tian, C. L.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 9558. |
[3] | (a) Muramatsu, W.; Yamamoto, H. J. Am. Chem. Soc. 2021, 143, 6792. |
[3] | (b) Muramatsu, W.; Hattori, T.; Yamamoto, H. Chem. Commun. 2021, 57, 6346. |
[3] | (c) Albericio, F.; El-Faham, A. Org. Process Res. Dev. 2018, 22, 760. |
[4] | (a) Wang, Z.; Wang, X.; Wang, P.; Zhao, J. J. Am. Chem. Soc. 2021, 143, 10374. |
[4] | (b) Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang, C.; Zhao, J. J. Am. Chem. Soc. 2016, 138, 13135. |
[5] | Isidro-Llobet, A.; Kenworthy, M. N.; Mukherjee, S.; Kopach, M. E.; Wegner, K.; Gallou, F.; Smith, A. G.; Roschangar, F. J. Org. Chem. 2019, 84, 4615. |
[6] | Subiros-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Chem. Eur. J. 2009, 15, 9394. |
[7] | Wang, F.; Xu, L.; Chu, G.; Shi, J.; Guo, Q. Chin. J. Org. Chem. 2016, 36, 218. (in Chinese) |
[7] | ( 王风亮, 许玲, 储国超, 石景, 郭庆祥, 有机化学, 2016, 36, 218.) |
[8] | (a) Qu, Q.; Pan, M.; Gao, S.; Zheng, Q. Y.; Yu, Y. Y.; Su, J. C.; Li, X.; Hu, H. G. Adv. Sci. 2018, 5, 1800234. |
[8] | (b) Qu, Q.; Gao, S.; Wu, F.; Zhang, M. G.; Li, Y.; Zhang, L. H.; Bierer, D.; Tian, C. L.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2020, 59, 6037. |
[8] | (c) Guan, C. J.; Wang, T.; Wang, J.; Li, Y. M. Chin. J. Org. Chem. 2016, 36, 2763. (in Chinese) |
[8] | ( 管超建, 王涛, 王君, 李宜明, 有机化学, 2016, 36, 2763.) |
[8] | (d) Huang, Y. C.; Guan, C. J.; Tan, X. L.; Chen, C. C.; Guo, Q. X.; Li, Y. M. Org. Biomol. Chem. 2015, 13, 1500. |
[8] | (e) Liang, L. J.; Chu, G. C.; Qu, Q.; Zuo, C.; Mao, J.; Zheng, Q.; Chen, J.; Meng, X.; Jing, Y.; Deng, H.; Li, Y. M.; Liu, L. Angew. Chem., Int. Ed. 2021, 60, 17171. |
[8] | (f) Zuo, C.; Shi, W.-W.; Chen, X.-X.; Glatz, M.; Riedl, B.; Flamme, I.; Pook, E.; Wang, J.; Fang, G.-M.; Bierer, D.; Liu, L. Sci. China Chem. 2019, 62, 1371. |
[9] | (a) Coste, B.; Mathur, J.; Schmidt, M.; Earley, T. J.; Ranade, S.; Petrus, M. J.; Dubin, A. E.; Patapoutian, A. Science 2010, 330, 55. |
[9] | (b) Coste, B.; Xiao, B.; Santos, J. S.; Syeda, R.; Grandl, J.; Spencer, K. S.; Kim, S. E.; Schmidt, M.; Mathur, J.; Dubin, A. E.; Montal, M.; Patapoutian, A. Nature 2012, 483, 176. |
[10] | (a) Bae, C.; Gnanasambandam, R.; Nicolai, C.; Sachs, F.; Gottlieb, P. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E1162. |
[10] | (b) Albuisson, J.; Murthy, S. E.; Bandell, M.; Coste, B.; Louis-Dit-Picard, H.; Mathur, J.; Feneant-Thibault, M.; Tertian, G.; de Jaureguiberry, J. P.; Syfuss, P. Y.; Cahalan, S.; Garcon, L.; Toutain, F.; Simon Rohrlich, P.; Delaunay, J.; Picard, V.; Jeunemaitre, X.; Patapoutian, A. Nat. Commun. 2013, 4, 1884. |
[11] | (a) Suchyna, T. M.; Johnson, J. H.; Hamer, K.; Leykam, J. F.; Gage, D. A.; Clemo, H. F.; Baumgarten, C. M.; Sachs, F. J. Gen. Physiol. 2000, 115, 583. |
[11] | (b) Ostrow, K. L.; Mammoser, A.; Suchyna, T.; Sachs, F.; Oswald, R.; Kubo, S.; Chino, N.; Gottlieb, P. A. Toxicon 2003, 42, 263. |
[12] | (a) Qu, Q.; Gao, S.; Li, Y. M. J. Pept. Sci. 2018, 24, e3112. |
[12] | (b) Zhu, W.; Hou, F.; Fang, J.; Bahrani Fard, M. R.; Liu, Y.; Ren, S.; Wu, S.; Qi, Y.; Sui, S.; Read, A. T.; Sherwood, J. M.; Zou, W.; Yu, H.; Zhang, J.; Overby, D. R.; Wang, N.; Ethier, C. R.; Wang, K. iScience 2021, 24, 102042. |
[13] | (a) Fang, G. M.; Wang, J. X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347. |
[13] | (b) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645. |
[13] | (c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.; Guo, Q. X.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 4858. |
[14] | (a) Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Huang, Y.; Wang, J.; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429. |
[14] | (b) Chen, X. T.; Wang, J. Y.; Ma, Y. N.; Dong, L. Y.; Jia, S. X.; Yin, H.; Fu, X. Y.; Du, S. S.; Qi, Y. K.; Wang, K. J. Pept. Sci. 2021, e3368. |
[15] | (a) Wang, J.; Dong, L.; Liu, Y.; Chen, X.; Ma, Y.; Yin, H.; Du, S.; Qi, Y.; Wang, K. Chin. J. Org. Chem. 2021, 41, 2800. (in Chinese) |
[15] | ( 王金艳, 董黎颖, 刘雅妮, 陈西同, 马艳楠, 尹昊, 杜姗姗, 齐昀坤, 王克威, 有机化学, 2021, 41, 2800.) |
[15] | (b) Tang, S.; Zuo, C.; Huang, D. L.; Cai, X. Y.; Zhang, L. H.; Tian, C. L.; Zheng, J. S.; Liu, L. Nat. Protoc. 2017, 12, 2554. |
[15] | (c) Li, J. B.; Qi, Y. K.; He, Q. Q.; Ai, H. S.; Liu, S. L.; Wang, J. X.; Zheng, J. S.; Liu, L.; Tian, C. Cell Res. 2018, 28, 257. |
/
〈 |
|
〉 |