研究论文

三甲基溴硅烷诱导的N-保护吲哚的区域选择性二聚合成2,3′-吲哚基二氢吲哚

  • 唐爱玲 ,
  • 金伟伟 ,
  • 刘晨江
展开
  • 新疆大学化学学院 乌鲁木齐 830046

收稿日期: 2021-09-06

  修回日期: 2021-10-19

  网络出版日期: 2021-11-03

基金资助

国家自然科学基金(21572195); 国家自然科学基金(21702175); 国家自然科学基金(21961037)

Trimethylsilyl Bromide-Induced Regioselective Dimerization of N-Protected Indoles to 2,3'-Linked Indolylindolines

  • Ailing Tang ,
  • Weiwei Jin ,
  • Chenjiang Liu
Expand
  • College of Chemistry, Xinjiang University, Urumqi 830046
* Corresponding authors. E-mail: ;

Received date: 2021-09-06

  Revised date: 2021-10-19

  Online published: 2021-11-03

Supported by

National Natural Science Foundation of China(21572195); National Natural Science Foundation of China(21702175); National Natural Science Foundation of China(21961037)

摘要

报道了一种三甲基溴硅烷促进的通过碳-碳键交叉偶联反应合成N-甲基吲哚二聚体的方法. 在温和条件下以最高95%的收率方便地合成了一系列2,3′-吲哚基二氢吲哚类化合物. 克级反应证明了该方法的实用性. 初步研究了目标产物的紫外-可见吸收和荧光光谱性质.

本文引用格式

唐爱玲 , 金伟伟 , 刘晨江 . 三甲基溴硅烷诱导的N-保护吲哚的区域选择性二聚合成2,3′-吲哚基二氢吲哚[J]. 有机化学, 2021 , 41(12) : 4758 -4765 . DOI: 10.6023/cjoc202109011

Abstract

A dimerization of N-methylindoles by trimethylsilyl bromide promoted C—C bond cross coupling reactions is described. A series of 2,3'-linked indolylindolines are smoothly installed under mild reaction conditions with up to 95% yields. The gram scale reactions demonstrate the practicality of this protocol. The UV-vis absorption and fluorescence spectra properties of target products are preliminarily studied.

参考文献

[1]
Yu, H.; Yu, Z. Angew. Chem., nt. Ed. 2009, 48, 2929.
[2]
(a) Ishikura, M.; Yamada, K. Nat. Prod. Rep. 2009, 26, 803.
[2]
(b) Lee, G. W.; Kim, N.-K.; Jeong, K.-S. Org. Lett. 2010, 12, 2634.
[3]
(c) Deng, Y.; Haimowitz, T.; LaPorte, M. G.; Rippin, S. R.; Alexander, M. D.; Kumar, P. T.; Hendi, M. S.; Lee, Y.-H.; Condon, S. M. ACS Med. Chem. Lett. 2016, 7, 318.
[3]
(d) Lee, C.-H.; Yoon, H.; Jang, W.-D. Chem.-Eur. J. 2009, 15, 9972.
[4]
(a) Hinman, R. L.; Shull, E. R. J. Org. Chem. 1961, 26, 2339.
[4]
(b) Chisholm, J. D.; Van Vranken, D. L. J. Org. Chem. 1995, 60, 6672.
[5]
(a) Pal, B.; Giri, V. S.; Jaisankar, P. Catal. Commun. 2005, 6, 711.
[5]
(b) Shelke, G. M.; Kumar, A. Synthesis 2017, 49, 4321.
[5]
(c) Fujino, K.; Yanase, E.; Nakatsuka, S. Heterocycl. Commun. 2004, 10, 265.
[6]
Nemoto, K.; Tanaka, S.; Konno, M.; Onozawa, S.; Chiba, M.; Tanaka, Y.; Sasaki, Y.; Okubo, R.; Hattori, T. Tetrahedron 2016, 72, 734.
[7]
Higuchi, K.; Tago, T.; Kokubo, Y.; Ito, M.; Tayu, M.; Sugiyama, S.; Kawasaki, T. Org. Chem. Front. 2018, 5, 3219.
[8]
(a) Wu, Y.; Chen, J.-Y.; Ning, J.; Jiang, X.; Deng, J.; Deng, Y.; Xu, R.; He, W.-M. Green Chem. 2021, 23, 3950.
[8]
(b) Wang, X.; Li, G.; Sun, K.; Zhang, B. Chin. J. Org. Chem. 2020, 40, 913. (in Chinese)
[8]
( 王薪, 李国锋, 孙凯, 张冰, 有机化学, 2020, 40, 913.)
[8]
(c) Yi, R.; He, W.-M. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[8]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[8]
(d) Han, Y.; Cui, X. Chin. J. Org. Chem. 2021, 41, 2929. (in Chinese)
[8]
( 韩宇轩, 崔秀灵, 有机化学, 2021, 41, 2929.)
[9]
(a) Liu, S.; Zhao, F.; Chen, X.; Deng, G.-J.; Huang, H. Adv. Synth. Catal. 2020, 362, 3795.
[9]
(b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873.
[9]
(c) Cerveri, A.; Bandini, M. Chin. J. Chem. 2020, 38, 287.
[9]
(d) Yu, Y.; Zhong, J-S.; Xu, K.; Yuan, Y.; Ye, K.-Y. Adv. Synth. Catal. 2020, 362, 2102.
[10]
(a) Luo, J.; Xu, X.; Zheng, J. Chin. J. Org. Chem. 2018, 38, 363. (in Chinese)
[10]
( 骆钧飞, 徐星, 郑俊良, 有机化学, 2018, 38, 363.)
[10]
(b) Wang, D.; Salazar, C. A.; Stahl, S. S. Organometallics 2021, 40, 2198
[10]
(c) Liang, R.-X.; Zhong, C.; Liu, Z.-H.; Yang, M.; Tang, H.-W.; Chen, J.-F.; Yang, Y.-F.; Jia, Y.-X. ACS Catal. 2021, 11, 1827.
[11]
(a) Andorfer, M. C.; Park, H. J.; Vergara-Coll, J.; Lewis, J. C. Chem. Sci. 2016, 7, 3720.
[11]
(b) Sun, L.; Zhang, X.; Li, Z.; Ma, J.; Zeng, Z.; Jiang, H. Eur. J. Org. Chem. 2018, 4949.
[12]
(a) Hu, K.; Zhang, Y.; Zhou, Z.; Yang, Y.; Zha, Z.; Wang, Z. Org. Lett. 2020, 22, 5773.
[12]
(b) Zhang, Z.; Zhang, B.-S.; Li, K.-L.; An, Y.; Liu, C.; Gou, X.-Y.; Liang, Y.-M. J. Org. Chem. 2020, 85, 7817.
[13]
(a) Kona, C. N.; Nishii, Y.; Miura, M. Org. Lett. 2021, 23, 6252.
[13]
(b) Wang, Z.-T.; Zheng, Z.-A.; Li, P.-J.; Zhou, C.-N.; Cai, S.-J.; Xiao, B.; Wang, L. Chin. J. Chem. 2021, 39, 2823.
[13]
(c) Pradhan, S.; Mishra, M.; De, P. B.; Banerjee, S.; Punniyamurthy, T. Org. Lett. 2020, 22, 1720.
[14]
(a) Fang, S.; Jiang, G.; Li, M.; Liu, Z.; Jiang, H.; Wu, W. Chem. Commun. 2019, 55, 13769.
[14]
(b) Wu, W.; Fang, S.; Jiang, G.; Li, M.; Jiang, H. Org. Chem. Front. 2019, 6, 2200.
[15]
Li, Y.; Wang, W.-H.; Yang, S.-D.; Li, B.-J.; Feng, C.; Shi, Z.-J. Chem. Commun. 2010, 46, 4553.
[16]
Liang, Z.; Zhao, J.; Zhang, Y. J. Org. Chem. 2010, 75, 170.
[17]
Li, Y.-X.; Ji, K.-G.; Wang, H.-X.; Ali, S.; Liang, Y.-M. J. Org. Chem. 2011, 76, 744.
[18]
(a) Sun, Y.; Wang, R.; Liu, T.; Jin, W.; Wang, B.; Zhang, Y.; Xia, Y.; Liu, C. Eur. J. Org. Chem. 2021, 3743.
[18]
(b) Liu, Y.; Ma, X.; Wu, G.; Liu, Z.; Yang, X.; Wang, B.; Liu, C.; Zhang, Y.; Huang, Y. New J. Chem. 2019, 43, 9255.
[18]
(c) Cao, D.; Zhang, Y.; Liu, C.; Wang, B.; Sun, Y.; Abdukader, A.; Hu, H.; Liu, Q. Org. Lett. 2016, 18, 2000.
[19]
Sun, Q.; Liu, W.; Ying, S.; Wang, L.; Xue, S.; Yang, W. RSC Adv. 2015, 5, 73046.
[20]
Shelke, G. M.; Kumar, A. Synthesis 2017, 49, 4321.
[21]
Ji, Y.-Z.; Li, H.-J.; Wang, Y.-R.; Zhang, Z.-Y.; Wu, Y.-C. Adv. Synth. Catal. 2020, 362, 1039.
文章导航

/