研究论文

I2/PhNO2介导的芳乙酮C(CO)—C键氧化断裂和2-氨基芳甲酰胺胺化合成喹唑啉-4(3H)-酮

  • 张瑞芹 ,
  • 马仁超 ,
  • 傅琴姣 ,
  • 陈静 ,
  • 马永敏
展开
  • a 浙江中医药大学药学院 杭州 310053
    b 台州学院高等研究院 浙江台州 318000
† 共同第一作者

收稿日期: 2021-09-07

  修回日期: 2021-10-14

  网络出版日期: 2021-11-03

基金资助

浙江省自然科学基金(LY19H300001)

I2/PhNO2 Mediated Synthesis of Quinazolin-4(3H)-ones by C(CO)—C Bond Oxidative Cleavage of Acetophenones and Amination with 2-Aminobenzamides

  • Ruiqin Zhang ,
  • Renchao Ma ,
  • Qinjiao Fu ,
  • Jing Chen ,
  • Yongmin Ma
Expand
  • a School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053
    b School of Advanced Study, Taizhou University, Taizhou, Zhejiang 318000
† These authors contributed equally to this work.
* Corresponding authors. E-mail: ;

Received date: 2021-09-07

  Revised date: 2021-10-14

  Online published: 2021-11-03

Supported by

Zhejiang Provincial Natural Science Foundation of China(LY19H300001)

摘要

开发了一种以苯乙酮和2-氨基苯甲酰胺为原料, 在I2/PhNO2介导下合成了喹唑啉-4(3H)-酮的新方法. 该反应涉及苯乙酮与2-氨基苯甲酰胺间的两个C—N键的形成, 接着苯乙酮的C(CO)—C键氧化裂解. 此外, 还进行了由I2/PhNO2和CuBr/K2CO3介导的一锅串联合成喹唑啉-4(3H)-酮的反应.

本文引用格式

张瑞芹 , 马仁超 , 傅琴姣 , 陈静 , 马永敏 . I2/PhNO2介导的芳乙酮C(CO)—C键氧化断裂和2-氨基芳甲酰胺胺化合成喹唑啉-4(3H)-酮[J]. 有机化学, 2022 , 42(3) : 854 -862 . DOI: 10.6023/cjoc202109014

Abstract

A simple and efficient protocol for the synthesis of quinazolin-4(3H)-ones from acetophenones and 2-aminobenz- amides mediated by I2/PhNO2 has been achieved. The reaction probably involves two C—N bond formations between acetophenones and 2-aminobenzamides followed by C(CO)—C bond oxidative cleavage of acetophenones. Alternatively, a one-pot tandem reaction mediated by I2/PhNO2 and CuBr/K2CO3 was performed for the synthesis of quinazolin-4(3H)-ones.

参考文献

[1]
(a) Jiang, Y.-Y.; Li, G.; Yang, D.; Zhang, Z.; Zhu, L.; Fan, X.; Bi, S. ACS Catal. 2019, 9, 1066.
[1]
(b) Ma, R.; He, L.-N.; Liu, A.-H.; Song, Q.-W. Chem. Commun. 2016, 52, 2145.
[1]
(c) Li, G.; Arisawa, M.; Yamaguchi, M. Chem. Commun. 2014, 50, 4328.
[1]
(d) Zhang, L.; Bi, X.; Guan, X.; Li, X.; Liu, Q.; Barry, B.-D.; Liao, P. Angew. Chem., Int. Ed. 2013, 52, 11303.
[1]
(e) Ding, W.; Song, Q. Org. Chem. Front. 2015, 2, 765.
[1]
(f) Xu, X.; Ding, W.; Lin, Y.; Song, Q. Org. Lett. 2015, 17, 516.
[2]
Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Org. Lett. 2015, 17, 2960.
[3]
Tiwari, A. R.; Bhanage, B. M. Asian J. Org. Chem. 2017, 6, 831.
[4]
Ravi, O.; Shaikh, A.; Upare, A.; Singarapu, K. K.; Bathula, S. R. J. Org. Chem. 2017, 82, 4422.
[5]
(a) Ma, R.; Ding, Y.; Chen, R.; Wang, Z.; Wang, L.; Ma, Y. J. Org. Chem. 2021, 86, 310.
[5]
(b) Ding, Y.; Ma, R.; Ma, Y. Tetrahedron Lett. 2021, 70, 153016.
[6]
(a) Maia, R. C.; Silva, L. L.; Mazzeu, E. F.; Fumian, M. M.; de Rezende, C. M.; Doriguetto, A. C.; Correa, R. S.; Miranda, A. L. P.; Barreiro, E. J.; Fraga, C. A. M. Bioorg. Med. Chem. 2009, 17, 6517.
[6]
(b) Somanadhan, B.; Leong, C.; Whitton, S. R.; Ng, S.; Buss, A. D.; Butler, M. S. J. Nat. Prod. 2011, 74, 1500.
[6]
(c) Patil, D. A.; Patil, P. O.; Patil, G. B.; Surana, S. J. Mini-Rev. Med. Chem. 2011, 11, 633.
[6]
(d) Shen, S.; Li, W.; Wang, J. Nat. Prod. Res. 2013, 27, 2286.
[7]
(a) Chang, X.; Sun, D.; Shi, D.; Wang, G.; Chen, Y.; Zhang, K.; Tan, H.; Liu, J.; Liu, B.; Ouyang, L. Acta Pharm. Sin. B 2021, 11, 156.
[7]
(b) Eissa, I. H.; Ibrahim, M. K.; Metwaly, A. M.; Belal, A.; Mehany, A. B. M.; Abdelhady, A. A.; Elhendawy, M. A.; Radwan, M. M.; ElSohly, M. A.; Mahdy, H. A. Bioorg. Chem. 2021, 107, 104532.
[7]
(c) El-Adl, K.; El-Helby, A.-G. A.; Ayyad, R. R.; Mahdy, H. A.; Khalifa, M. M.; Elnagar, H. A.; Mehany, A. B. M.; Metwaly, A. M.; Elhendawy, M. A.; Radwan, M. M.; ElSohly, M. A.; Eissa, I. H. Bioorg. Med. Chem. 2021, 29, 115872.
[8]
(a) Dewangan, D.; Verma, V. S.; Nakhate, K. T.; Tripathi, D. K.; Kashyap, P.; Dhongade, H. Med. Chem. Res. 2016, 25, 2143.
[8]
(b) Patil, D. A.; Surana, S. J. Med. Chem. Res. 2016, 25, 1125.
[9]
(a) Deres, L.; Bartha, E.; Palfi, A.; Eros, K.; Riba, A.; Lantos, J.; Kalai, T.; Hideg, K.; Sumegi, B.; Gallyas, F.; Toth, K.; Halmosi, R. PLoS One 2014, 9, e102148.
[9]
(b) Li, S.; Zuo, S.-J.; Cao, L.; Liu, D.-Z.; Zhang, S.-Q.; Cao, Y.-X. Eur. J. Pharmacol. 2016, 791, 741.
[9]
(c) Magyar, K.; Deres, L.; Eros, K.; Bruszt, K.; Seress, L.; Hamar, J.; Hideg, K.; Balogh, A.; Gallyas, F., Jr.; Sumegi, B.; Toth, K.; Halmosi, R. Biochim. Biophys. Acta, Mol. Basis Dis. 2014, 1842, 935.
[10]
(a) Kothayer, H.; Ibrahim, S. M.; Soltan, M. K.; Rezq, S.; Mahmoud, S. S. Drug Dev. Res. 2019, 80, 343.
[10]
(b) Ugale, V. G.; Patel, H. M.; Wadodkar, S. G.; Bari, S. B.; Shirkhedkar, A. A.; Surana, S. J. Eur. J. Med. Chem. 2012, 53, 107.
[11]
(a) Narendhar, B.; Chitra, K.; Alagarsamy, V. A. Pharm. Chem. J. 2021, 55, 54.
[11]
(b) Qian, Y.; Allegretta, G.; Janardhanan, J.; Peng, Z.; Mahasenan, K. V.; Lastochkin, E.; Gozun, M. M. N.; Tejera, S.; Schroeder, V. A.; Wolter, W. R.; Feltzer, R.; Mobashery, S.; Chang, M. J. Med. Chem. 2020, 63, 5287.
[11]
(c) Yang, X.; Wang, X.; Wu, M. Chin. J. Org. Chem. 2014, 34, 1015. (in Chinese)
[11]
(杨绪红, 王翔, 吴鸣虎, 有机化学, 2014, 34, 1015.)
[11]
(d) Wang, S.; Gao, M.; Tan, G.; Ma, H.; Zhao, Y.; Du, H.; Wang, Z.; Chen, H.; Li, X. Chin. J. Org. Chem. 2017, 37, 385. (in Chinese)
[11]
(王淑霞, 高梦颖, 谭官海, 马海霞, 赵莹莹, 杜鸿源, 王总帅, 陈华, 李小六, 有机化学, 2017, 37, 385.)
[12]
(a) Ghosh, P.; Ganguly, B.; Das, S. Org. Biomol. Chem. 2020, 18, 4497.
[12]
(b) He, L.; Li, H.; Chen, J.; Wu, X.-F. RSC Adv. 2014, 4, 12065.
[12]
(c) Maiden, T. M. M.; Harrity, J. P. A. Org. Biomol. Chem. 2016, 14, 8014.
[13]
(a) Wang, C.; Qian, P.-C.; Chen, F.; Cheng, J. Tetrahedron Lett. 2020, 61, 152441.
[13]
(b) Wei, L.; Wei, Y.; Zhang, J.; Xu, L. Green Chem. 2021, 23, 4446.
[13]
(c) Cao, L.; Huo, H.; Zeng, H.; Yu, Y.; Lu, D.; Gong, Y. Adv. Synth. Catal. 2018, 360, 4764.
[13]
(d) Ma, Z.; Song, T.; Yuan, Y.; Yang, Y. Chem. Sci. 2019, 10, 10283.
[13]
(e) Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Org. Lett. 2011, 13, 1274.
[13]
(f) Ou, J.; Liu, K.; Wang, Y.; Zhang, H.; Liu, R.; Li, Q.; Wang, Q.; Li, Y.; Rui, C.; Liu, S. Chin. J. Org. Chem. 2014, 34, 526. (in Chinese)
[13]
(欧俊军, 刘克昌, 王毅, 张浩, 刘瑞全, 李奇博, 汪清民, 李永强, 芮昌辉, 刘尚钟, 有机化学, 2014, 34, 526.)
[13]
(g) Feng, Y.; Tan, G.; Zhou, L.; Wang, S.; Chen, H.; Li, X. Chin. J. Org. Chem. 2017, 37, 429. (in Chinese)
[13]
(冯钰欣, 谭官海, 周利凯, 王淑霞, 陈华, 李小六, 有机化学, 2017, 37, 429.)
[14]
(a) Das, S.; Sinha, S.; Samanta, D.; Mondal, R.; Chakraborty, G.; Brandaõ, P.; Paul, N. D. J. Org. Chem. 2019, 84, 10160.
[14]
(b) Xie, Z.; Lan, J.; Zhu, H.; Lei, G.; Jiang, G.; Le, Z. Chin. Chem. Lett. 2021, 32, 1427.
[14]
(c) Li, F.; Lu, L.; Liu, P. Org. Lett. 2016, 18, 2580.
[14]
(d) Zhang, Z.; Wang, M.; Zhang, C.; Zhang, Z.; Lu, J.; Wang, F. Chem. Commun. 2015, 51, 9205.
[14]
(e) Zhong, J.-J.; To, W.-P.; Liu, Y.; Lu, W.; Che, C.-M. Chem. Sci. 2019, 10, 4883.
[15]
(a) Laha, J. K.; Panday, S.; Tomar, M.; Patel, K. V. Org. Biomol. Chem. 2021, 19, 845.
[15]
(b) Tian, Q.; Zhang, J.; Xu, L.; Wei, Y. Mol. Catal. 2021, 500, 111345.
[15]
(c) Hu, B.-Q.; Wang, L.-X.; Yang, L.; Xiang, J.-F.; Tang, Y.-L. Eur. J. Org. Chem. 2015, 2015, 4504.
[15]
d) Yan, B.; Lü, X.; Du, H.; Bao, X. Chin. J. Org. Chem. 2016, 36, 207. (in Chinese)
[15]
(闫柏任, 吕新阳, 杜欢, 鲍小平, 有机化学, 2016, 36, 207.)
[16]
(a) To, T. A.; Vo, Y. H.; Nguyen, H. T. T.; Ha, P. T. M.; Doan, S. H.; Doan, T. L. H.; Li, S.; Le, H. V.; Tu, T. N.; Phan, N. T. S. J. Catal. 2019, 370, 11.
[16]
(b) Long, L.; Wang, Y.-H.; Zhuo, J.-X.; Tu, Z.-C.; Wu, R.; Yan, M.; Liu, Q.; Lu, G. Eur. J. Med. Chem. 2018, 157, 1361.
[17]
(a) Hu, F.-P.; Cui, X.-F.; Lu, G.-Q.; Huang, G.-S. Org. Biomol. Chem. 2020, 18, 4376.
[17]
(b) Tavakoli-Hoseini, N.; Davoodnia, A. Chin. J. Chem. 2011, 29, 1685.
[17]
(c) Chen, G. S.; Kalchar, S.; Kuo, C.-W.; Chang, C.-S.; Usifoh, C. O.; Chern, J.-W. J. Org. Chem. 2003, 68, 2502.
[17]
(d) Kabri, Y.; Gellis, A.; Vanelle, P. Green Chem. 2009, 11, 201.
[17]
(e) Wu, H.; An, Q.; He, C.; Fan, X.; Guo, W.; Zuo, M.; Xu, C.; Guo, R.; Chu, W.; Sun, Z. Adv. Synth. Catal. 2020, 362, 2459.
[17]
(f) Sun, J.; Zhou, L.; Tan, G.; Wang, S.; Chen, H.; Li, X. Chin. J. Org. Chem. 2017, 37, 455. (in Chinese)
[17]
(孙佳婧, 周利凯, 谭官海, 李帅, 王淑霞, 陈华, 李小六, 有机化学, 2017, 37, 455.)
[18]
(a) Upadhyaya, K.; Thakur, R. K.; Shukla, S. K.; Tripathi, R. P. J. Org. Chem. 2016, 81, 5046.
[18]
(b) Sun, X.; Hu, Y.; Nie, S.-Z.; Yan, Y.-Y.; Zhang, X.-J.; Yan, M. Adv. Synth. Catal. 2013, 355, 2179.
[19]
(a) Ram, S.; Shaifali; Chauhan, A. S.; Sheetal; Sharma A. K.; Das, P. Chem.-Eur. J. 2019, 25, 14506.
[19]
(b) You, S.; Huang, B.; Yan, T.; Cai, M. J. Organomet. Chem. 2018, 875, 35.
[19]
(c) Jiang, X.; Tang, T.; Wang, J.-M.; Chen, Z.; Zhu, Y.-M.; Ji, S.-J. J. Org. Chem. 2014, 79, 5082.
[20]
(a) Sharma, R.; Abdullaha, M.; Bharate, S. B. Asian J. Org. Chem. 2017, 6, 1370.
[20]
(b) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Green Chem. 2013, 15, 2713.
[20]
(c) Qi, X.-X.; Song, Z.-Z.; Gong, J.-L.; Fang, Z.-Y.; Wu, X.-F. Chin. Chem. Lett. 2016, 27, 21.
[20]
(d) Zhang, M.; Liu, Y.; Wang, X. Chin. J. Org. Chem. 2014, 34, 1682. (in Chinese)
[20]
(张梅梅, 刘蕴, 王香善, 有机化学, 2014, 34, 1682.)
[21]
(a) Zhao, D.; Wang, T.; Li, J.-X. Chem. Commun. 2014, 50, 6471.
[21]
(b) Kim, S.; Jeoung, D.; Kim, K.; Lee, S. B.; Lee, S. H.; Park, M. S.; Ghosh, P.; Mishra, N. K.; Hong, S.; Kim, I. S. Eur. J. Org. Chem. 2020, 2020, 7134.
[22]
Nguyen, T. B.; Hou, J.-Y.; Retailleau, P. Adv. Synth. Catal. 2019, 361, 3337.
[23]
Zhu, Y.-P.; Fei, Z.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Org. Lett. 2013, 15, 378.
[24]
Mohammed, S.; Vishwakarma, R. A.; Bharate, S. B. J. Org. Chem. 2015, 80, 6915.
[25]
Liao, Y.; Qi, H.; Chen, S.; Jiang, P.; Zhou, W.; Deng, G.-J. Org. Lett. 2012, 14, 6004.
[26]
Zhou, J.; Fang, J. J. Org. Chem. 2011, 76, 7730.
[27]
Zhao, D.; Wang, T.; Li, J.-X. Chem. Commun. 2014, 50, 6471.
[28]
Chen, J.; Liang, E.; Shi, J.; Wu, Y.; Wen, K.; Yao, X.; Tang, X. RSC Adv. 2011, 11, 4966.
[29]
Potewar, T. M.; Nadaf, R. N.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Synth. Commun. 2005, 35, 231.
[30]
Kotipalli, T.; Kavala, V.; Janreddy, D.; Bandi, V.; Kuo, C.-W.; Yao, C.-F. Eur. J. Org. Chem. 2016, 1182.
[31]
Kausar, N.; Roy, I.; Chattopadhyay, D.; Das, A. R. RSC Adv. 2016, 6, 22320.
[32]
Nguyen, L. H. T.; Nguyen, T. T. T.; Dang, Y. T.; Tran, P. H.; Doan, T. L. H. Asian J. Org. Chem. 2019, 8, 2276.
文章导航

/