研究论文

对甲苯硫酚/三环己基膦介导的硝基芳烃的光化学还原反应

  • 鲍兆伟 ,
  • 吕洁 ,
  • 金智超
展开
  • 贵州大学绿色农药与农业生物工程国家重点实验室培育基地教育部绿色农药与农业生物工程重点实验室 贵阳 550025

收稿日期: 2021-09-24

  修回日期: 2021-10-26

  网络出版日期: 2021-11-03

基金资助

国家自然科学基金(21801051); 国家自然科学基金(21961006); 国家自然科学基金(32172459); 贵州省科技技术基金(黔科合基础-ZK[2021]重点033)

Photochemical Reduction of Nitroaromatics Mediated by p-Toluenethiol/PCy3

  • Zhaowei Bao ,
  • Jie Lü ,
  • Zhichao Jin
Expand
  • State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025
* Corresponding author. E-mail:

Received date: 2021-09-24

  Revised date: 2021-10-26

  Online published: 2021-11-03

Supported by

National Natural Science Foundation of China(21801051); National Natural Science Foundation of China(21961006); National Natural Science Foundation of China(32172459); Science and Technology Department of Guizhou Province(黔科合基础-ZK[2021]重点033)

摘要

报道了一种无溶剂、无金属温和条件下, 对甲苯硫酚/三环己基膦介导的硝基芳烃的光化学还原反应. 该反应具有广泛的普遍适用性, 带有不同取代基和取代模式的胺类衍生物可以获得良好的产率. 因此该还原方法是一种具有潜在价值的高效合成胺类化合物的新策略.

本文引用格式

鲍兆伟 , 吕洁 , 金智超 . 对甲苯硫酚/三环己基膦介导的硝基芳烃的光化学还原反应[J]. 有机化学, 2021 , 41(12) : 4773 -4779 . DOI: 10.6023/cjoc202109037

Abstract

A new photochemical reduction of nitroaromatics mediated by p-toluenethiol and PCy3 under solvent-free, metal-free, and mild conditions is reported for the first time. This reaction has shown good generalities, and amine derivatives with different substituents and substitution patterns can be obtained in good yields. Therefore, this reduction method represents a potentially valuable new strategy for the efficient synthesis of amine compounds.

参考文献

[1]
(a) Zhu, S.; Xu, S.; Jing, W.; Zhao, Z.; Jiang, J. J. Agric. Food Chem. 2016, 64, 9702.
[1]
(b) Liu, X. H.; Wen, Y. H.; Cheng, L.; Xu, T. M.; Wu, N. J. J. Agric. Food Chem. 2021, 69, 6968.
[2]
(a) Ye, L. J.; Toh, H. H.; Yang, Y.; Adams, J. P.; Snajdrova, R.; Li, Z. ACS Catal. 2015, 5, 1119.
[2]
(b) Werner, L.; Machara, A.; Hudlicky, T. Adv. Synth. Catal. 2010, 352, 195.
[2]
(c) Das Sarma, K.; Zhang, J.; Huang, Y.; Davidson, J. G. Eur. J. Org. Chem. 2006, 2006, 3730.
[3]
(a) Lin, C.-F.; Chien, C.-W.; Ojima, I. Org. Chem. Front. 2014, 1, 1062.
[3]
(b) Afanasyev, O. I.; Kuchuk, E.; Usanov, D. L.; Chusov, D. Chem. Rev. 2019, 119, 11857.
[4]
(a) Strotman, N. A.; Baxter, C. A.; Brands, K. M.; Cleator, E.; Krska, S. W.; Reamer, R. A.; Wallace, D. J.; Wright, T. J. J. Am. Chem. Soc. 2011, 133, 8362.
[4]
(b) Magnus, P.; Sane, N.; Fauber, B. P.; Lynch, V. J. Am. Chem. Soc. 2009, 131, 16045.
[4]
(c) Cox, C. D.; Breslin, M. J.; Whitman, D. B.; Schreier, J. D.; McGaughey, G. B.; Bogusky, M. J.; Roecker, A. J.; Mercer, S. P.; Bednar, R. A.; Lemaire, W.; Bruno, J. G.; Reiss, D. R.; Harrell, C. M.; Murphy, K. L.; Garson, S. L.; Doran, S. M.; Prueksaritanont, T.; Anderson, W. B.; Tang, C.; Roller, S.; Cabalu, T. D.; Cui, D.; Hartman, G. D.; Young, S. D.; Koblan, K. S.; Winrow, C. J.; Renger, J. J.; Coleman, P. J. J. Med. Chem. 2010, 53, 5320.
[4]
(d) Baxter, C. A.; Cleator, E.; Brands, K. M. J.; Edwards, J. S.; Reamer, R. A.; Sheen, F. J.; Stewart, G. W.; Strotman, N. A.; Wallace, D. J. Org. Process Res. Dev. 2011, 15, 367.
[5]
(a) Xu, D.-Q.; Hu, Z.-Y.; Li, W.-W.; Luo, S.-P.; Xu, Z.-Y. J. Mol. Catal. A: Chem. 2005, 235, 137.
[5]
(b) Wu, G.; Huang, M.; Richards, M.; Poirier, M.; Wen, X.; Draper, R. W. Synthesis 2003, 1657.
[5]
(c) Xu, S.; Tang, J.; Zhou, Q.; Du, J.; Li, H. ACS Sustainable Chem. Eng. 2019, 7, 16190.
[5]
(d) Xiao, Q.; Sarina, S.; Waclawik, E. R.; Jia, J.; Chang, J.; Riches, J. D.; Wu, H.; Zheng, Z.; Zhu, H. ACS Catal. 2016, 6, 1744.
[5]
(e) Tsutsumi, K.; Uchikawa, F.; Sakai, K.; Tabata, K. ACS Catal. 2016, 6, 4394.
[5]
(f) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
[5]
(g) Pachisia, S.; Kishan, R.; Yadav, S.; Gupta, R. Inorg. Chem. 2021, 60, 2009.
[5]
(h) Liu, Y.; Miao, W.; Tang, W.; Xue, D.; Xiao, J.; Wang, C.; Li, C. Chem. Asian J. 2021, 16, 1725.
[5]
(i) Gutiérrez-Tarriño, S.; Rojas-Buzo, S.; Lopes, C. W.; Agostini, G.; Calvino, J. J.; Corma, A.; Oña-Burgos, P. Green Chem. 2021, 23, 4490.
[5]
(j) Cheung, C. W.; Hu, X. Nat. Commun. 2016, 7, 12494.
[5]
(k) Blaser, H.-U.; Steiner, H.; Studer, M. ChemCatChem 2009, 1, 210.
[6]
(a) Gao, Y.; Ma, D.; Wang, C.; Guan, J.; Bao, X. Chem. Commun. 2011, 47, 2432.
[6]
(b) Giomi, D.; Alfini, R.; Brandi, A. Tetrahedron 2011, 67, 167.
[6]
(c) Li, B.; Xu, Z. J. Am. Chem. Soc. 2009, 131, 16380.
[6]
(d) Orlandi, M.; Benaglia, M.; Tosi, F.; Annunziata, R.; Cozzi, F. J. Org. Chem. 2016, 81, 3037.
[6]
(e) Orlandi, M.; Tosi, F.; Bonsignore, M.; Benaglia, M. Org. Lett. 2015, 17, 3941.
[6]
(f) Sharma, S.; Kumar, M.; Kumar, V.; Kumar, N. J. Org. Chem. 2014, 79, 9433.
[7]
Pirola, M.; Faverio, C.; Orlandi, M.; Benaglia, M. Chem.-Eur. J. 2021, 27, 10247.
[8]
Porwal, D.; Oestreich, M. Eur. J. Org. Chem. 2016, 2016, 3307.
[9]
Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005, 70, 5014.
[10]
Duan, Z.; Ranjit, S.; Liu, X. Org. Lett. 2010, 12, 2430.
[11]
Shi, J.; Wei, W. Chin. J. Org. Chem. 2020, 40, 2170. (in Chinese)
[11]
( 时建伟, 魏伟, 有机化学, 2020, 40, 2170.)
[12]
(a) Peng, S.; Lin, Y.; He, W.-M. Chin. J. Org. Chem. 2020, 40, 541. (in Chinese)
[12]
( 彭莎, 林英武, 何卫民, 有机化学, 2020, 40, 541.)
[12]
(b) Chen, D.; Sun, Y.; Dong, D.; Han, Q.; Wang, Z. Chin. J. Org. Chem. 2020, 40, 4267. (in Chinese)
[12]
( 陈德茂, 孙媛媛, 董道青, 韩晴晴, 王祖利, 有机化学, 2020, 40, 4267.)
[12]
(c) Ge, L.; Chiou, M.-F.; Li, Y.; Bao, H. Green Synth. Catal. 2020, 1, 86.
[12]
(d) Cao, D.; Pan, P.; Li, C.-J.; Zeng, H. Green Synth. Catal. 2021, 2, 303.
[12]
(e) Wang, P.; Zhao, Q.; Xiao, W.; Chen, J. Green Synth. Catal. 2020, 1, 42.
[12]
(f) Tong, S.; Li, K.; Ouyang, X.; Song, R.; Li, J. Green Synth. Catal. 2021, 2, 145.
[13]
(a) Wang, Z.; Liu, Q.; Liu, R.; Ji, Z.; Li, Y.; Zhao, X.; Wei, W. Chin. Chem. Lett. 2021 DOI: 10.1016/j.cclet.2021.08.036.
[13]
(b) Meng, N.; Lv, Y.; Liu, Q.; Liu, R.; Zhao, X.; Wei, W. Chin. Chem. Lett. 2021, 32, 258.
[13]
(c) Wang, L.; Bao, P.; Liu, W.; Liu, S.; Hu, C.; Yue, H.; Yang, D.; Wei, W. Chin. J. Org. Chem. 2018, 38, 3189. (in Chinese)
[13]
( 王雷雷, 鲍鹏丽, 刘维伟, 刘思彤, 胡昌松, 岳会兰, 杨道山, 魏伟, 有机化学, 2018, 38, 3189.)
[13]
(d) Bao, P.; Liu, F.; Lv, Y.; Yue, H.; Li, J.-S.; Wei, W. Org. Chem. Front. 2020, 7, 492.
[14]
(a) Jin, W.; Liu, C. Chin. J. Org. Chem. 2021, 41, 2148. (in Chinese)
[14]
( 金伟伟, 刘晨江, 有机化学, 2021, 41, 2148.)
[14]
(b) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1907.
[14]
(c) Sun, K.; Xiao, F.; Yu, B.; He, W.-M. Chin. J. Catal. 2021, 42, 1921.
[15]
Qu, Z.; Chen, X.; Zhong, S.; Deng, G. J.; Huang, H. Org. Lett. 2021, 23, 5349.
[16]
Smolinsky, G.; Feuer, B. I. J. Org. Chem. 1966, 31, 3882.
[17]
Zhao, L.; Hu, C.; Cong, X.; Deng, G.; Liu, L. L.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2021, 143, 1618.
[18]
Li, J.; Shi, X.-Y.; Bi, Y.-Y.; Wei, J.-F.; Chen, Z.-G. ACS Catal. 2011, 1, 657.
[19]
Wienhofer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. J. Am. Chem. Soc. 2011, 133, 12875.
[20]
Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Org. Chem. Front. 2021, 8, 4554.
[21]
Formenti, D.; Ferretti, F.; Topf, C.; Surkus, A.-E.; Pohl, M.-M.; Radnik, J.; Schneider, M.; Junge, K.; Beller, M.; Ragaini, F. J. Catal. 2017, 351, 79.
[22]
Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Org. Lett. 2016, 18, 2774.
文章导航

/