亚稳醌类分子的活性调控与仿生催化反应
收稿日期: 2021-08-18
修回日期: 2021-11-02
网络出版日期: 2021-11-10
基金资助
国家自然科学基金(21602067)
Reactivity Modulation of Labile Quinones and Biomimetic Catalytic Transformations
Received date: 2021-08-18
Revised date: 2021-11-02
Online published: 2021-11-10
Supported by
National Natural Science Foundation of China(21602067)
左鸿华 , 钟芳锐 . 亚稳醌类分子的活性调控与仿生催化反应[J]. 有机化学, 2022 , 42(3) : 665 -678 . DOI: 10.6023/cjoc202108032
Quinones and their imine counterparts constitute a class of highly electrophilic and dearomatized synthon. Their preparation and synthetic applications are challenged by limited stability due to the tendency of dimerization/polymerization and hydrolysis. By taking a biomimetic catalytic oxidation strategy, we have developed oxidation systems comprising metal catalysts and green terminal oxidants that realized in situ oxidation of phenols and reactivity modulation of labile quinone intermediates. This has led to the establishment of several [3+2], [3+3] and [4+2] cycloadditions and control of their regioselectivity and stereoselectivity. In this account, our recent advances in reactivity modulation of labile quinones/quinone imines and their biomimetic catalytic transformations are summarized.
[1] | (a) Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F. H. Med. Res. Rev. 2012, 32, 1131. |
[1] | (b) Sunassee, S. N.; Davies-Coleman, M. T. Nat. Prod. Rep. 2012, 29, 513. |
[1] | (c) Abraham, I.; Joshi, R.; Pardasani, P.; Pardasani, R. T. J. Braz. Chem. Soc. 2011, 22, 385. |
[1] | (d) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676. (in Chinese) |
[1] | (王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.) |
[1] | (e) Yang, R.; Zhao, Y.; Jiang, M.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2016, 36, 2941. (in Chinese) |
[1] | (杨瑞霞, 赵宇澄, 蒋美妤, 严胜骄, 林军, 有机化学, 2016, 36, 2941.) |
[2] | (a) Wienhöfer, G.; Schröder, K.; Möller, K.; Junge, K.; Beller, M. Adv. Synth Catal. 2010, 352, 1615. |
[2] | (b) Bekaert, A.; Andrieux, J.; Plat, M.; Brion, J.-D. Tetrahedron Lett. 1997, 38, 4219. |
[2] | (c) Bernardo, P. H.; Chai, C. L. L.; Elix, J. A. Tetrahedron Lett. 2002, 43, 2939. |
[2] | (d) Liebeskind, L. S. Tetrahedron, 1989, 45, 3053. |
[2] | (e) Chen, W. Chin. J. Org. Chem. 1986, 6, 432. (in Chinese) |
[2] | (陈文祥, 有机化学, 1986, 6, 432.) |
[3] | (a) Mijs, W. J.; de Jonge, C. R. H. I. Organic Syntheses by Oxidation with Metal Compounds; Plenum Press, New York, 1986. |
[3] | (b) Gu, L.; Zhong, Y. Chin. J. Org. Chem. 1989, 9, 239. (in Chinese) |
[3] | (古练权, 钟永利, 有机化学, 1989, 9, 239.) |
[4] | Wu, A.; Duan, Y.; Xu, D.; Penning, T. M.; Harvey, R. G. Tetrahedron 2010, 66, 2111. |
[5] | (a) Liao, C.-C. Pure Appl. Chem. 2005, 77, 1221 |
[5] | (b) Hosamani, B.; Ribeiro, M. F.; da Silva Júnior, E. N.; Namboothiri, I. N. N. Org. Biomol. Chem. 2016, 14, 6913. |
[5] | (b) Zhang, X.; Che, Y.-H.; Tan, B. Tetrahedron Lett. 2018, 59, 473. |
[5] | (c) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805. |
[6] | (a) Adams, R.; Nagarkatti, A. S. J. Am. Chem. Soc. 1950, 72, 4601. |
[6] | (b) Adams, R.; Stewart, J. M. J. Am. Chem. Soc. 1952, 74, 5876. |
[6] | (c) Friedrichsen, W.; Bottcher, A. Heterocycles 1981, 16, 1009. |
[6] | (d) Nair, V.; Dhanya, R.; Rajesh, C.; Devipriya, S. Synlett 2005, 2407. |
[7] | Nair, V.; Menon, R. S.; Biju, A. T.; Abhilash, K. G. Chem. Soc. Rev. 2012, 41, 1050. |
[8] | (a) Capozzi, G.; Falciani, C.; Menichetti, S.; Nativi, C. J. Org. Chem. 1997, 62, 2611. |
[8] | (b) Abdel-Mohsen, H. T.; Conrad, J.; Beifuss, U. Green Chem. 2014, 16, 90. |
[8] | (c) Denizot, N.; Lachkar, D.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. Synthesis 2018, 50, 4229. |
[9] | Liao, C.-C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856. |
[10] | (a) Zhang, Y.-C.; Zhao, J.-J.; Jiang, F.; Sun, S.-B.; Shi, F. Angew. Chem., nt. Ed. 2014, 53, 13912. |
[10] | (b) Ma, C.; Zhang, T.; Zhou, J.-Y.; Mei, G.-J.; Shi, F. Chem. Commun. 2017, 53, 12124. |
[10] | (c) Liu, T. Chin. J. Org. Chem. 2020, 40, 2678 (In Chinese). |
[10] | (刘腾, 有机化学, 2020, 40, 2678.) |
[11] | Nicolaou, K. C.; Majumder, U.; Roche, S. P.; Chen, D. Y.-K. Angew. Chem., nt. Ed. 2007, 46, 4715. |
[12] | Lachkar, D.; Denizot, N.; Bernadat, G.; Ahamada, K.; Beniddir, M. A.; Dumontet, V.; Gallard, J.-F.; Guillot, R.; Leblanc, K.; N'nang, E. O.; Turpin, V.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. Nat. Chem. 2017, 9, 793. |
[13] | (a) Bodipati, N.; Peddinti, R. K. Org. Biomol. Chem. 2012, 10, 1958. |
[13] | (b) Nguyen, K. M. H.; Schwendimann, L.; Gressens, P.; Largeron, M. Org. Biomol. Chem. 2015, 13, 3749. |
[14] | Wu, Z.; Wen, K.; Zhang, J.; Zhang, W. Org. Lett. 2017, 19, 2813. |
[15] | (a) Adams, R.; Winnick, C. N. J. Am. Chem. Soc. 1951, 73, 5687. |
[15] | (b) Friedrichsen, W.; Bottcher, A. Heterocycles 1981, 16, 1009. |
[16] | Wang, D.; Yu, H.; Sun, S.; Zhong, F. Org. Lett. 2020, 22, 2425. |
[17] | Esguerra, K. V. N.; Fall, Y.; Lumb, J.-P. Angew. Chem., nt. Ed. 2014, 53, 5877. |
[18] | Pereira, M. M.; Dias, L. D.; Calvete, M. J. F. ACS Catal. 2018, 8, 10784. |
[19] | (a) Barry, C. E., III; Nayar, P. G.; Begley, T. P. Biochemistry 1989, 28, 6323. |
[19] | (b) Smith, A. W.; Camara-Artigas, A.; Wang, M.; Allen, J. P.; Francisco, W. A. Biochemistry 2006, 45, 4378. |
[20] | (a) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isonagie, C.; Lectka, T. Angew. Chem., nt. Ed. 2006, 45, 7398. |
[20] | (b) Paull, D. H.; Alden-Danforth, E.; Wolfer, J.; Dogo-Isonagie, C.; Abraham, C. J.; Lectka, T. J. Org. Chem. 2007, 72, 5380. |
[21] | Hishida, T.; Nogami, T.; Shirota Y. and Mikawa, H. Chem. Lett., 1974, 293. |
[22] | Bashir, M. A.; Zuo, H.; Lu, X.; Wu, Y.; Zhong, F. Chem. Commun. 2020, 56, 5965. |
[23] | (a) Spreng, M.; Deleforge, J.; Thomas, V.; Boisramé, B.; Drugeon, H. J. Vet. Pharmacol. Therap. 1995, 18, 284. |
[23] | (b) Ke, S.-Y.; Qian, X.-H.; Liu, F.-Y.; Wang, N.; Yang, Q.; Li, Z. Eur. J. Med. Chem. 2009, 44, 2113. |
[24] | (a) Buff, H.; Kuckländer, U. Tetrahedron 2000, 56, 5137. |
[24] | (b) Casper, D. M.; Kieser, D.; Blackburn, J. R.; Hitchcock, S. R. Synth. Commun. 2004, 34, 835. |
[24] | (c) Hitchcock, S. R.; Dean, M. A.; Kelley, C. J.; Edler, K. L.; Ferrence, G. M. J. Heterocycl. Chem. 2010, 47, 982. |
[25] | Zuo, H.; Qin, J.; Zhang, W.; Bashir, M. A.; Yu, Q.; Zhao, W.; Wu, G.; Zhong, F. Org. Lett. 2020, 22, 6911. |
[26] | Baglia, R. A.; Zaragoza, J. P. T.; Goldberg, D. P. Chem. Rev. 2017, 117, 13320. |
[27] | (a) Enache, T. A.; Oliveira-Brett, A. M. J. Electroanal. Chem. 2011, 655, 9. |
[27] | (b) Li, Y.; Liu, L.-D.; Liu, L.; Liu, Y.; Zhang, H.-W.; Han, X. J. Mol. Catal. A: Chem. 2016, 411, 264. |
[28] | (a) Williams, N. S.; Burgett, A. W. G.; Atkins, A. S.; Wang, X.; Harran, P. G.; McKnight, S. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2074. |
[28] | (b) Williams, N. S.; Burgett, A. W. G.; Atkins, A. S.; Wang, X.; Harran, P. G.; McKnight, S. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2074. |
[29] | Nagarajua, K.; Ma, D. Chem. Soc. Rev. 2018, 47, 8018. |
[30] | (a) Shu, C.; Liao, L.-H.; Liao, Y.-J.; Hu, X.-Y.; Zhang, Y.-H.; Yuan, W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2014, 4467. |
[30] | (b) Liao, L-H.; Shu, C.; Zhang, M.; Liao, Y.; Hu, Hu, X.; Zhang, Y.; Wu, Z.; Yuan, W.; Zhang, X. Angew. Chem., nt. Ed. 2014, 53, 10471. |
[31] | Liu, Q.-J.; Zhu, J.; Song, X.-Y.; Wang, L.; Wang, S. R.; Tang, Y. Angew. Chem., nt. Ed. 2018, 57, 3810. |
[32] | Fu, Y.; Yu, Q.; Zhang, Y.; Gao, Z.; Wu, Y.; Zhong, F. Org. Biomol. Chem. 2019, 17, 9994. |
[33] | (a) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365. |
[33] | (b) Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. ACS Catal. 2021, 11, 3891. |
[33] | (c) Li, Z.; Wang, X. Chin. J. Org. Chem. 2021, 41, 2517. (in Chinese) |
[33] | (李照坤, 王晓明, 有机化学, 2021, 41, 2517.) |
[33] | (d) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993. |
[33] | (e) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091. (in Chinese) |
[33] | (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.) |
[34] | (a) Meng, J.; Li, X.-H.; Han, Z.-Y. Org. Lett. 2017, 19, 1076. |
[34] | (b) Wang, P.-S.; Chen, D.-F.; Gong, L.-Z. Top. Curr. Chem. 2020, 378, 9. |
[34] | (c) Wan, X.; Sun, M.; Wang, J.-Y.; Yu, L.; Wu, Q.; Zhang, Y.-C.; Shi, F. Org. Chem. Front. 2021, 8, 212. |
[34] | (d) Loui, H. J.; Suneja, A.; Schneider, C. Org. Lett. 2021, 23, 2578. |
[35] | Yu, Q.; Fu, Y.; Huang, J.; Qin, J.; Zuo, H.; Wu, Y.; Zhong, F. ACS Catal. 2019, 9, 7285. |
[36] | Liao, S.; List, B. Angew. Chem., nt. Ed. 2010, 49, 628. |
[37] | Konidena, R. K.; Lee, K. H.; Lee, J. Y. J. Mater. Chem. C 2019, 7, 13912. |
[38] | Bashir, M. A.; Zhang, Y.; Yu, H.; Wang, B.; Zhao, W.; Zhong, F. Green Chem. 2021, 23, 5031. |
[39] | (a) Im, Y.; Byun, S. Y.; Kim, J. H.; Lee, D. R.; Oh, C. S.; Yook, K. S.; Lee, J. Y. Adv. Funct. Mater. 2017, 27, 1603007. |
[39] | (b) Cai, X. Y.; Su, S. J. Adv. Funct. Mater. 2018, 28, 1802558. |
[40] | (a) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137. |
[40] | (b) Li, X.; Hewgley, J. B.; Mulrooney, C.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500. |
[40] | (c) Bringmann, G.; Breuning, M.; Price Mortimer, A. J.; Gresser, M. J.; Keller, P. A.; Garner, J. Angew. Chem., nt. Ed. 2005, 44, 5384. |
/
〈 |
|
〉 |