研究专题

亚稳醌类分子的活性调控与仿生催化反应

  • 左鸿华 ,
  • 钟芳锐
展开
  • 华中科技大学化学与化工学院 生物医用与防护材料湖北省工程研究中心 生物无机化学与药物湖北省重点实验室 武汉 430074

左鸿华, 硕士. 2018年本科毕业于三峡大学生物与制药学院, 同年保送至华中科技大学化学与化工学院攻读硕士学位, 师从钟芳锐教授. 2021年6月获得有机化学专业硕士学位并接受国家留学基金委资助前往德国柏林工业大学Martin Oestreich教授课题组攻读博士学位. 硕士期间主要从事亚稳醌的活性调控与仿生催化反应、有机小分子不对称催化反应研究.

钟芳锐, 博士. 华中科技大学化学与化工学院教授,博士生导师, 入选湖北省海外高层次人才计划. 2008年本科毕业于浙江大学化学系, 2012年获得新加坡国立大学博士学位, 师从知名有机化学家卢一新教授. 2013年至2015年先后在德国慕尼黑工业大学和乌尔姆大学从事博士后研究, 德国洪堡学者(合作导师为德国科学院院士Thorsten Bach教授). 2015年12月起任华中科技大学教授, 主持和参与国家自然科学基金、科技部“合成生物学”重点研究计划、湖北省科技厅技术创新重大专项、深圳市基础研究项目等项目. 目前从事面向可持续化学的绿色催化合成、不对称催化和人工酶催化研究.

收稿日期: 2021-08-18

  修回日期: 2021-11-02

  网络出版日期: 2021-11-10

基金资助

国家自然科学基金(21602067)

Reactivity Modulation of Labile Quinones and Biomimetic Catalytic Transformations

  • Honghua Zuo ,
  • Fangrui Zhong
Expand
  • Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074
* Corresponding author. E-mail:

Received date: 2021-08-18

  Revised date: 2021-11-02

  Online published: 2021-11-10

Supported by

National Natural Science Foundation of China(21602067)

摘要

醌及其亚胺类化合物是高亲电性、去芳构化的经典合成子, 然而受限于易聚合、易水解等稳定性问题, 其制备以及合成应用存在诸多挑战. 我们利用仿生催化氧化策略, 以易得的酚类化合物为原料, 发展了金属催化剂/绿色终端氧化剂组合的催化体系, 实现了高活性亚稳醌类分子的原位生成与活性调控, 丰富了基于醌中间体的[3+2]、[3+3]、[4+2]等多个环加成反应并实现了区域选择性和立体选择性调控. 对我们小组在亚稳醌的活性调控和仿生催化反应方面的研究成果做阶段性小节.

本文引用格式

左鸿华 , 钟芳锐 . 亚稳醌类分子的活性调控与仿生催化反应[J]. 有机化学, 2022 , 42(3) : 665 -678 . DOI: 10.6023/cjoc202108032

Abstract

Quinones and their imine counterparts constitute a class of highly electrophilic and dearomatized synthon. Their preparation and synthetic applications are challenged by limited stability due to the tendency of dimerization/polymerization and hydrolysis. By taking a biomimetic catalytic oxidation strategy, we have developed oxidation systems comprising metal catalysts and green terminal oxidants that realized in situ oxidation of phenols and reactivity modulation of labile quinone intermediates. This has led to the establishment of several [3+2], [3+3] and [4+2] cycloadditions and control of their regioselectivity and stereoselectivity. In this account, our recent advances in reactivity modulation of labile quinones/quinone imines and their biomimetic catalytic transformations are summarized.

参考文献

[1]
(a) Padhye, S.; Dandawate, P.; Yusufi, M.; Ahmad, A.; Sarkar, F. H. Med. Res. Rev. 2012, 32, 1131.
[1]
(b) Sunassee, S. N.; Davies-Coleman, M. T. Nat. Prod. Rep. 2012, 29, 513.
[1]
(c) Abraham, I.; Joshi, R.; Pardasani, P.; Pardasani, R. T. J. Braz. Chem. Soc. 2011, 22, 385.
[1]
(d) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676. (in Chinese)
[1]
(王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.)
[1]
(e) Yang, R.; Zhao, Y.; Jiang, M.; Yan, S.; Lin, J. Chin. J. Org. Chem. 2016, 36, 2941. (in Chinese)
[1]
(杨瑞霞, 赵宇澄, 蒋美妤, 严胜骄, 林军, 有机化学, 2016, 36, 2941.)
[2]
(a) Wienhöfer, G.; Schröder, K.; Möller, K.; Junge, K.; Beller, M. Adv. Synth Catal. 2010, 352, 1615.
[2]
(b) Bekaert, A.; Andrieux, J.; Plat, M.; Brion, J.-D. Tetrahedron Lett. 1997, 38, 4219.
[2]
(c) Bernardo, P. H.; Chai, C. L. L.; Elix, J. A. Tetrahedron Lett. 2002, 43, 2939.
[2]
(d) Liebeskind, L. S. Tetrahedron, 1989, 45, 3053.
[2]
(e) Chen, W. Chin. J. Org. Chem. 1986, 6, 432. (in Chinese)
[2]
(陈文祥, 有机化学, 1986, 6, 432.)
[3]
(a) Mijs, W. J.; de Jonge, C. R. H. I. Organic Syntheses by Oxidation with Metal Compounds; Plenum Press, New York, 1986.
[3]
(b) Gu, L.; Zhong, Y. Chin. J. Org. Chem. 1989, 9, 239. (in Chinese)
[3]
(古练权, 钟永利, 有机化学, 1989, 9, 239.)
[4]
Wu, A.; Duan, Y.; Xu, D.; Penning, T. M.; Harvey, R. G. Tetrahedron 2010, 66, 2111.
[5]
(a) Liao, C.-C. Pure Appl. Chem. 2005, 77, 1221
[5]
(b) Hosamani, B.; Ribeiro, M. F.; da Silva Júnior, E. N.; Namboothiri, I. N. N. Org. Biomol. Chem. 2016, 14, 6913.
[5]
(b) Zhang, X.; Che, Y.-H.; Tan, B. Tetrahedron Lett. 2018, 59, 473.
[5]
(c) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805.
[6]
(a) Adams, R.; Nagarkatti, A. S. J. Am. Chem. Soc. 1950, 72, 4601.
[6]
(b) Adams, R.; Stewart, J. M. J. Am. Chem. Soc. 1952, 74, 5876.
[6]
(c) Friedrichsen, W.; Bottcher, A. Heterocycles 1981, 16, 1009.
[6]
(d) Nair, V.; Dhanya, R.; Rajesh, C.; Devipriya, S. Synlett 2005, 2407.
[7]
Nair, V.; Menon, R. S.; Biju, A. T.; Abhilash, K. G. Chem. Soc. Rev. 2012, 41, 1050.
[8]
(a) Capozzi, G.; Falciani, C.; Menichetti, S.; Nativi, C. J. Org. Chem. 1997, 62, 2611.
[8]
(b) Abdel-Mohsen, H. T.; Conrad, J.; Beifuss, U. Green Chem. 2014, 16, 90.
[8]
(c) Denizot, N.; Lachkar, D.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. Synthesis 2018, 50, 4229.
[9]
Liao, C.-C.; Peddinti, R. K. Acc. Chem. Res. 2002, 35, 856.
[10]
(a) Zhang, Y.-C.; Zhao, J.-J.; Jiang, F.; Sun, S.-B.; Shi, F. Angew. Chem., nt. Ed. 2014, 53, 13912.
[10]
(b) Ma, C.; Zhang, T.; Zhou, J.-Y.; Mei, G.-J.; Shi, F. Chem. Commun. 2017, 53, 12124.
[10]
(c) Liu, T. Chin. J. Org. Chem. 2020, 40, 2678 (In Chinese).
[10]
(刘腾, 有机化学, 2020, 40, 2678.)
[11]
Nicolaou, K. C.; Majumder, U.; Roche, S. P.; Chen, D. Y.-K. Angew. Chem., nt. Ed. 2007, 46, 4715.
[12]
Lachkar, D.; Denizot, N.; Bernadat, G.; Ahamada, K.; Beniddir, M. A.; Dumontet, V.; Gallard, J.-F.; Guillot, R.; Leblanc, K.; N'nang, E. O.; Turpin, V.; Kouklovsky, C.; Poupon, E.; Evanno, L.; Vincent, G. Nat. Chem. 2017, 9, 793.
[13]
(a) Bodipati, N.; Peddinti, R. K. Org. Biomol. Chem. 2012, 10, 1958.
[13]
(b) Nguyen, K. M. H.; Schwendimann, L.; Gressens, P.; Largeron, M. Org. Biomol. Chem. 2015, 13, 3749.
[14]
Wu, Z.; Wen, K.; Zhang, J.; Zhang, W. Org. Lett. 2017, 19, 2813.
[15]
(a) Adams, R.; Winnick, C. N. J. Am. Chem. Soc. 1951, 73, 5687.
[15]
(b) Friedrichsen, W.; Bottcher, A. Heterocycles 1981, 16, 1009.
[16]
Wang, D.; Yu, H.; Sun, S.; Zhong, F. Org. Lett. 2020, 22, 2425.
[17]
Esguerra, K. V. N.; Fall, Y.; Lumb, J.-P. Angew. Chem., nt. Ed. 2014, 53, 5877.
[18]
Pereira, M. M.; Dias, L. D.; Calvete, M. J. F. ACS Catal. 2018, 8, 10784.
[19]
(a) Barry, C. E., III; Nayar, P. G.; Begley, T. P. Biochemistry 1989, 28, 6323.
[19]
(b) Smith, A. W.; Camara-Artigas, A.; Wang, M.; Allen, J. P.; Francisco, W. A. Biochemistry 2006, 45, 4378.
[20]
(a) Wolfer, J.; Bekele, T.; Abraham, C. J.; Dogo-Isonagie, C.; Lectka, T. Angew. Chem., nt. Ed. 2006, 45, 7398.
[20]
(b) Paull, D. H.; Alden-Danforth, E.; Wolfer, J.; Dogo-Isonagie, C.; Abraham, C. J.; Lectka, T. J. Org. Chem. 2007, 72, 5380.
[21]
Hishida, T.; Nogami, T.; Shirota Y. and Mikawa, H. Chem. Lett., 1974, 293.
[22]
Bashir, M. A.; Zuo, H.; Lu, X.; Wu, Y.; Zhong, F. Chem. Commun. 2020, 56, 5965.
[23]
(a) Spreng, M.; Deleforge, J.; Thomas, V.; Boisramé, B.; Drugeon, H. J. Vet. Pharmacol. Therap. 1995, 18, 284.
[23]
(b) Ke, S.-Y.; Qian, X.-H.; Liu, F.-Y.; Wang, N.; Yang, Q.; Li, Z. Eur. J. Med. Chem. 2009, 44, 2113.
[24]
(a) Buff, H.; Kuckländer, U. Tetrahedron 2000, 56, 5137.
[24]
(b) Casper, D. M.; Kieser, D.; Blackburn, J. R.; Hitchcock, S. R. Synth. Commun. 2004, 34, 835.
[24]
(c) Hitchcock, S. R.; Dean, M. A.; Kelley, C. J.; Edler, K. L.; Ferrence, G. M. J. Heterocycl. Chem. 2010, 47, 982.
[25]
Zuo, H.; Qin, J.; Zhang, W.; Bashir, M. A.; Yu, Q.; Zhao, W.; Wu, G.; Zhong, F. Org. Lett. 2020, 22, 6911.
[26]
Baglia, R. A.; Zaragoza, J. P. T.; Goldberg, D. P. Chem. Rev. 2017, 117, 13320.
[27]
(a) Enache, T. A.; Oliveira-Brett, A. M. J. Electroanal. Chem. 2011, 655, 9.
[27]
(b) Li, Y.; Liu, L.-D.; Liu, L.; Liu, Y.; Zhang, H.-W.; Han, X. J. Mol. Catal. A: Chem. 2016, 411, 264.
[28]
(a) Williams, N. S.; Burgett, A. W. G.; Atkins, A. S.; Wang, X.; Harran, P. G.; McKnight, S. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2074.
[28]
(b) Williams, N. S.; Burgett, A. W. G.; Atkins, A. S.; Wang, X.; Harran, P. G.; McKnight, S. L. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2074.
[29]
Nagarajua, K.; Ma, D. Chem. Soc. Rev. 2018, 47, 8018.
[30]
(a) Shu, C.; Liao, L.-H.; Liao, Y.-J.; Hu, X.-Y.; Zhang, Y.-H.; Yuan, W.-C.; Zhang, X.-M. Eur. J. Org. Chem. 2014, 4467.
[30]
(b) Liao, L-H.; Shu, C.; Zhang, M.; Liao, Y.; Hu, Hu, X.; Zhang, Y.; Wu, Z.; Yuan, W.; Zhang, X. Angew. Chem., nt. Ed. 2014, 53, 10471.
[31]
Liu, Q.-J.; Zhu, J.; Song, X.-Y.; Wang, L.; Wang, S. R.; Tang, Y. Angew. Chem., nt. Ed. 2018, 57, 3810.
[32]
Fu, Y.; Yu, Q.; Zhang, Y.; Gao, Z.; Wu, Y.; Zhong, F. Org. Biomol. Chem. 2019, 17, 9994.
[33]
(a) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
[33]
(b) Martínez, S.; Veth, L.; Lainer, B.; Dydio, P. ACS Catal. 2021, 11, 3891.
[33]
(c) Li, Z.; Wang, X. Chin. J. Org. Chem. 2021, 41, 2517. (in Chinese)
[33]
(李照坤, 王晓明, 有机化学, 2021, 41, 2517.)
[33]
(d) Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993.
[33]
(e) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091. (in Chinese)
[33]
(吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)
[34]
(a) Meng, J.; Li, X.-H.; Han, Z.-Y. Org. Lett. 2017, 19, 1076.
[34]
(b) Wang, P.-S.; Chen, D.-F.; Gong, L.-Z. Top. Curr. Chem. 2020, 378, 9.
[34]
(c) Wan, X.; Sun, M.; Wang, J.-Y.; Yu, L.; Wu, Q.; Zhang, Y.-C.; Shi, F. Org. Chem. Front. 2021, 8, 212.
[34]
(d) Loui, H. J.; Suneja, A.; Schneider, C. Org. Lett. 2021, 23, 2578.
[35]
Yu, Q.; Fu, Y.; Huang, J.; Qin, J.; Zuo, H.; Wu, Y.; Zhong, F. ACS Catal. 2019, 9, 7285.
[36]
Liao, S.; List, B. Angew. Chem., nt. Ed. 2010, 49, 628.
[37]
Konidena, R. K.; Lee, K. H.; Lee, J. Y. J. Mater. Chem. C 2019, 7, 13912.
[38]
Bashir, M. A.; Zhang, Y.; Yu, H.; Wang, B.; Zhao, W.; Zhong, F. Green Chem. 2021, 23, 5031.
[39]
(a) Im, Y.; Byun, S. Y.; Kim, J. H.; Lee, D. R.; Oh, C. S.; Yook, K. S.; Lee, J. Y. Adv. Funct. Mater. 2017, 27, 1603007.
[39]
(b) Cai, X. Y.; Su, S. J. Adv. Funct. Mater. 2018, 28, 1802558.
[40]
(a) Li, X.; Yang, J.; Kozlowski, M. C. Org. Lett. 2001, 3, 1137.
[40]
(b) Li, X.; Hewgley, J. B.; Mulrooney, C.; Yang, J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 5500.
[40]
(c) Bringmann, G.; Breuning, M.; Price Mortimer, A. J.; Gresser, M. J.; Keller, P. A.; Garner, J. Angew. Chem., nt. Ed. 2005, 44, 5384.
文章导航

/