综述与进展

砜亚胺N-芳基化的研究进展及其应用

  • 李雪 ,
  • 王聪 ,
  • 贾铁争
展开
  • 南方科技大学化学系 深圳格拉布斯研究院 广东深圳 518055

收稿日期: 2021-10-09

  修回日期: 2021-11-02

  网络出版日期: 2021-11-25

基金资助

深圳市科技创新委员会(JCYJ20180302180256215)

Recent Advances in N-Arylation of NH-Sulfoximines and Their Applications

  • Xue Li ,
  • Cong Wang ,
  • Tiezheng Jia
Expand
  • Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055
* Corresponding author. E-mail:

Received date: 2021-10-09

  Revised date: 2021-11-02

  Online published: 2021-11-25

Supported by

Science and Technology Innovation Commission of Shenzhen Municipality(JCYJ20180302180256215)

摘要

砜亚胺是有机合成中一类重要的结构单元, 可用作手性助剂、手性配体及有机催化剂等, 也是构建杂环化合物的关键中间体. 因其具有独特的生物活性, 在医药与农药方面也得到了广泛应用. 鉴于砜亚胺在有机化学以及药物研发中的重要作用, 其合成方法备受关注. 其中, 用NH-砜亚胺芳基化策略制备N-芳基砜亚胺的方法, 由于具有原子经济高、条件温和及反应路线短等优势, 受到了化学家越来越多的关注, 并取得了长足的进步. 系统介绍了NH-砜亚胺通过C—N键的构建来合成N-芳基砜亚胺的各类方法, 及其在有机合成方面的应用.

本文引用格式

李雪 , 王聪 , 贾铁争 . 砜亚胺N-芳基化的研究进展及其应用[J]. 有机化学, 2022 , 42(3) : 714 -731 . DOI: 10.6023/cjoc202110011

Abstract

Sulfoximines represent an important structural motif in organic chemistry, and have been utilized as chiral auxiliaries, chiral ligands and organocatalysts. They also serve as key intermediates for the construction of heterocyclic compounds. Attributing to their unique bioactivities, sulfoximines have been developed as previliged pharmacophores and widely used in pharmaceutical chemistry and agriculture. Considering the wide applications, the synthetic methods to afford sulfoximines have attracted increasing attention. Among them, the direct arylation of NH-sulfoximines to prepare NAr- sulfoxmines exhibites some unique advantages, including atom-economics, mild conditions and step-economics, and thus has made tremedous progress in recent years. Various methods of NH-sulfoximines to afford NAr-sulfoximines via a C—N bond formation strategy, as well as their applications in synthesis of bioactive molecules and ligands for transition-metal catalysts, are reviewed.

参考文献

[1]
Lücking, U. Angew. Chem., Int. Ed. 2013, 52, 9399.
[2]
Lücking, U.; Jautelat, R.; Krüger, M.; Brumby, T.; Lienau, P.; Schäfer, M.; Briem, H.; Schulze, J.; Hillisch, A.; Reichel, A.; Wengner, A. M.; Siemeister, G. ChemMedChem 2013, 8, 1021.
[3]
Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; Huang, J. X.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.; Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.; Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59, 2950.
[4]
(a) Bizet, V.; Hendriks, C. M.; Bolm, C. Chem. Soc. Rev. 2015, 44, 3378.
[4]
(b) Schafer, S.; Wirth, T. Angew. Chem., Int. Ed. 2010, 49, 2786.
[4]
(c) Tota, A.; Zenzola, M.; Chawner, S. J.; John-Campbell, S. S.; Carlucci, C.; Romanazzi, G.; Degennaro, L.; Bull, J. A.; Luisi, R. Chem. Commun. 2016, 53, 348.
[5]
Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
[6]
Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169.
[7]
Harmata, M.; Hong, X. Synlett 2007, 6, 969.
[8]
Yongpruksa, N.; Calkins, N. L.; Harmata, M. Chem. Commun. 2011, 47, 7665.
[9]
Yang, Q.; Choy, P. Y.; Zhao, Q.; Leung, M. P.; Chan, H. S.; So, C. M.; Wong, W. T.; Kwong, F. Y. J. Org. Chem. 2018, 83, 11369.
[10]
Cho, G. Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6, 3293.
[11]
Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70, 6904.
[12]
Vaddula, B.; Leazer, J.; Varma, R. S. Adv. Synth. Catal. 2012, 354, 986.
[13]
Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13, 359.
[14]
Wang, L.; Priebbenow, D. L.; Dong, W.; Bolm, C. Org. Lett. 2014, 16, 2661.
[15]
Grandhi, G. S.; Dana, S.; Mandal, A.; Baidya, M. Org. Lett. 2020, 22, 2606.
[16]
Moessner, C.; Bolm, C. Org. Lett. 2005, 7, 2667.
[17]
Gupta, S.; Baranwal, S.; Muniyappan, N.; Sabiah, S.; Kandasamy, J. Synthesis 2019, 51, 2171.
[18]
Wang, C.; Zhang, H.; Wells, L. A.; Liu, T.; Meng, T.; Liu, Q.; Walsh, P. J.; Kozlowski, M. C.; Jia, T. Nat. Commun. 2021, 12, 932.
[19]
Kim, J.; Ok, J.; Kim, S.; Choi, W.; Lee, P. H. Org. Lett. 2014, 16, 4602.
[20]
Zhu, H.; Teng, F.; Pan, C.; Cheng, J.; Yu, J.-T. Tetrahedron Lett. 2016, 57, 2372.
[21]
Hande, S.; Mfuh, A.; Throner, S.; Wu, Y.; Ye, Q.; Zheng, X. Tetrahedron Lett. 2019, 60, 151100.
[22]
Wimmer, A.; König, B. Org. Lett. 2019, 21, 2740.
[23]
Liu, D.; Liu, Z. R.; Ma, C.; Jiao, K. J.; Sun, B.; Wei, L.; Lefranc, J.; Herbert, S.; Mei, T. S. Angew. Chem., Int. Ed. 2021, 60, 9444.
[24]
Correa, A.; Bolm, C. Adv. Synth. Catal. 2008, 350, 391.
[25]
Wimmer, A.; König, B. Adv. Synth. Catal. 2018, 360, 3277.
[26]
Aithagani, S. K.; Dara, S.; Munagala, G.; Aruri, H.; Yadav, M.; Sharma, S.; Vishwakarma, R. A.; Singh, P. P. Org. Lett. 2015, 17, 5547.
[27]
Meier, R.; Hog, D.; Lämmermann, H.; Sudau, A.; Rackl, D.; Weinmann, H.; Collins, K.; Wortmann, L.; Candish, L. Synlett 2018, 29, 2679.
[28]
Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999, 38, 2577.
[29]
Harmata, M.; Ghosh, S. K. Org. Lett. 2001, 3, 3321.
[30]
Bolm, C.; Simic, O. J. Am. Chem. Soc. 2001, 123, 3830.
[31]
Bolm, C.; Martin, M.; Simic, O.; Verrucci, M. Org. Lett. 2003, 5, 427.
[32]
Langner, M.; Bolm, C. Angew. Chem., Int. Ed. 2004, 43, 5984.
[33]
Langner, M.; Remy, P.; Bolm, C. Chem.-Eur. J. 2005, 11, 6254.
[34]
Frings, M.; Atodiresei, I.; Wang, Y.; Runsink, J.; Raabe, G.; Bolm, C. Chem.-Eur. J. 2010, 16, 4577.
[35]
Moessner, C.; Bolm, C. Angew. Chem., Int. Ed. 2005, 44, 7564.
[36]
Biosca, M.; P?mies, O.; Diéguez, M. J. Org. Chem. 2019, 84, 8259.
[37]
Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754.
[38]
Harmata, M.; Hong, X. Org. Lett. 2007, 9, 2701.
[39]
Battula, S. R. K.; Subbareddy, G. V.; Chakravarthy, I. E.; Saravanan, V. RSC Adv. 2016, 6, 55710.
文章导航

/