研究论文

可见光介导无金属的苯乙酸衍生物脱羧氘代

  • 何宇航 ,
  • 杨慧 ,
  • 高冬旭 ,
  • 马嘉慧 ,
  • 邵亚敏 ,
  • 安光辉 ,
  • 李光明
展开
  • 黑龙江大学化学化工与材料学院 功能无机材料化学重点实验室 哈尔滨 150080

收稿日期: 2021-11-06

  修回日期: 2021-12-11

  网络出版日期: 2021-12-15

基金资助

国家自然科学基金(21502046)

Visible Light-Mediated Metal-Free Decarboxylative Deuteration of Carboxylic Acid

  • Yuhang He ,
  • Hui Yang ,
  • Dongxu Gao ,
  • Jiahui Ma ,
  • Yamin Shao ,
  • Guanghui An ,
  • Guangming Li
Expand
  • Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080
* Corresponding authors. E-mail: ;

Received date: 2021-11-06

  Revised date: 2021-12-11

  Online published: 2021-12-15

Supported by

National Natural Science Foundation of China(21502046)

摘要

报道了无金属可见光诱导的苯乙酸衍生物脱羧. 在无添加剂条件下, 使用廉价的氘源成功地实现了酸的直接脱羧单氘化. 此外, 在空气存在时, 类似的催化体系能够通过脱羧氧化生成酮.

关键词: 光化学; 无金属; 脱羧; 氘代

本文引用格式

何宇航 , 杨慧 , 高冬旭 , 马嘉慧 , 邵亚敏 , 安光辉 , 李光明 . 可见光介导无金属的苯乙酸衍生物脱羧氘代[J]. 有机化学, 2021 , 41(12) : 4725 -4731 . DOI: 10.6023/cjoc202111014

Abstract

A metal-free visible light-induced decarboxylation of phenylacetic acid derivatives has been successfully developed. Without the additives, direct decarboxylative monodeuteration of acids was successfully achieved using cheap deuterium sources. Besides, in presence of air, similar catalytic systems provided ketone products.

参考文献

[1]
(a) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Science 2017, 358, 1182.
[1]
(b) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., nt. Ed. 2018, 57, 1758.
[2]
(a) Zhang, P.-P.; Huang, D.; Newhouse, T. R. J. Am. Chem. Soc. 2020, 142, 1757.
[2]
(b) Sterckx, H.; De Houwer, J.; Mensch, C.; Herrebout, W.; Tehrani, K. A.; Maes, B. U. W. Beilstein J. Org. Chem. 2016, 12, 144.
[2]
(c) Liu, J.-Z.; Wen, X.-J.; Qin, C.; Li, X.-Y.; Luo, X.; Sun, A.; Zhu, B.-C.; Song, S.; Jiao, N. Angew. Chem., nt. Ed. 2017, 56, 11940.
[3]
(a) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., nt. Ed. 2018, 57, 3022.
[3]
(b) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., nt. Ed. 2007, 46, 7744.
[3]
(c) Bai, W.; Lee, K.-H.; Tse, S. K. S.; Chan, K. W.; Lin, Z.-Y.; Jia, G.-C. Organometallics 2015, 34, 3686.
[3]
(d) Tse, S. K. S.; Xue, P.; Lau, C. W. S.; Sung, H. H. Y.; Williams, I. D.; Jia, G.-C. Chem.-Eur. J. 2011, 17, 13918.
[3]
(e) Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.
[3]
(f) Hale, L. V. A.; Szymczak, N. K. J. Am. Chem. Soc. 2016, 138, 13489.
[4]
Modvig, A.; Andersen, T. L.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2014, 79, 5861.
[5]
(a) Cook, A.; Prakash, S.; Zheng, Y.-L.; Newman, S. G. J. Am. Chem. Soc. 2020, 142, 8109.
[5]
(b) Eisele, P.; Ullwer, F.; Scholz, S.; Plietker, B. Chem.-Eur. J. 2019, 25, 16550.
[5]
(c) Li, H.-Z.; Hou, Y.-X.; Liu, C.-W.; Lai, Z.-M.; Ning, L.; Szostak, R.; Szostak, M.; An, J. Org. Lett. 2020, 22, 1249.
[5]
(d) Zhu, N.-B.; Su, M.; Wan, W.-M.; Li, Y.-J.; Bao, H.-L. Org. Lett. 2020, 22, 991.
[5]
(e) Ding, Y.-X.; Luo, S.-H.; Weng, C.-Q.; An, J. J. Org. Chem. 2019, 84, 15098.
[5]
(f) Li, H.-Z.; Zhang, B.; Dong, Y.-H.; Liu, T.; Zhang, Y.-T.; Nie, H.-Y.; Yang, R.-Y.; Ma, X.-D.; Ling, Y.; An, J. Tetrahedron Lett. 2017, 58, 2757.
[6]
(a) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.
[6]
(b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[6]
(c) Xie, L.-Y.; Bai, Y.-S.; Xu, X.-Q.; Peng, X.; Tang, H.-S.; Huang, Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Green Chem. 2020, 22, 1720.
[6]
(d) Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z.; Peng, Y.-Y.; He, W.-M. Green Chem. 2021, 23, 374.
[6]
(e) Zhao, F.; Guo, S.; Zhang, Y.; Sun, T.; Yang, B.; Ye, Y.; Sun, K. Org. Chem. Front. 2021, DOI: 10.1039/d1qo01425k.
[6]
(f) Wang, X.; Li, G.-F.; Sun, K.; Zhang, B. Chin. J. Org. Chem. 2020, 40, 913. (in Chinese)
[6]
( 王薪, 李国锋, 孙凯, 张冰, 有机化学, 2020, 40, 913.)
[6]
(g) Sun, K.; Li, G.-F.; Li, Y.-Y.; Yu, J.; Zhao, Q.; Zhang, Z.-G.; Zhang, G.-S. Adv. Synth. Catal. 2020, 362, 1947.
[6]
(h) Bi, M.-X.; Qian, P.; Wang, Y.-K.; Zha, Z.-G.; Wang, Z.-Y. Chin. Chem. Lett. 2017, 28, 1159.
[7]
(a) Liu, C.-B.; Chen, Z.-X.; Su, C.-L.; Zhao, X.-X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.-B.; Peng, X.-W.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Nat. Commun. 2018, 9, 80.
[7]
(b) Liu, C.-B.; Han, S.-Y.; Li, M.-Y.; Chong, X.-D.; Zhang, B. Angew. Chem., nt. Ed. 2020, 59, 18527.
[7]
(c) Dong, Y.-Y.; Su, Y.-L.; Du, L.-L.; Wang, R.-F.; Zhang, L.; Zhao, D.-B.; Xie, W. ACS Nano 2019, 13, 10754.
[8]
Matsubara, S.; Yokota, Y.; Oshima, K. Org. Lett. 2004, 6, 2071.
[9]
Rudzki, M.; Alcalde-Aragonés, A.; Dzik, W. I.; Rodríguez, N.; Gooßen, L. J. Synthesis 2012, 44, 184.
[10]
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[10]
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., nt. Ed. 2012, 51, 6828.
[10]
(c) He, W.-M.; Cui, X.-L. Chin. Chem. Lett. 2021, 32, 1589.
[10]
(d) Zhao, Q.-Q.; Chen, J.-R. Chin. J. Org. Chem. 2021, 41, 871. (in Chinese)
[10]
( 赵全庆, 陈加荣, 有机化学, 2021, 41, 871.)
[10]
(e) Liu, X.; Li, W.; Zhuang, C.-Z.; Cao, H. Chin. J. Org. Chem. 2021, 41, 3459. (in Chinese)
[10]
( 刘想, 李文, 庄灿展, 曹华, 有机化学, 2021, 41, 3459.)
[10]
(f) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.-P.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588. (in Chinese)
[10]
( 王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588.)
[10]
(g) Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
[10]
(h) Yang, H.-Q.; Chen, Q.-Q.; Liu, F.-L.; Shi, R.; Chen, Y. Chin. Chem. Lett. 2021, 32, 676.
[10]
(i) Kong, Y.-L.; Xu, W.-X.; Liu, X.-H.; Weng, J.-Q. Chin. Chem. Lett. 2020, 31, 3245.
[10]
(j) Xie, L.-Y.; Liu, Y.-S.; Ding, H.-R.; Gong, S.-F.; Tan, J.-X.; He, J.-Y.; Cao, Z.; He, W.-M. Chin. J. Catal. 2020, 41, 1168.
[10]
(k) Meng, X.-X.; Kang, Q.-Q.; Zhang, J.-Y.; Li, Q.; Wei, W.-T.; He, W.-M.. Green Chem. 2020, 22, 1388.
[10]
(l) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Liu, H.-Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1907.
[11]
Patra, T.; Mukherjee, S.; Ma, J.; Strieth-Kalthoff, F.; Glorius, F. Angew. Chem., nt. Ed. 2019, 58, 10514.
[12]
(a) Li, N.; Ning, Y.-Y.; Wu, X.-P.; Xie, J.; Li, W.-P.; Zhu, C.-J. Chem. Sci. 2021, 12, 5505.
[12]
(b) Itou, T.; Yoshimi, Y.; Nishikawa, K.; Morita, T.; Okada, Y.; Ichinose, N.; Hatanaka, M. Chem. Commun. 2010, 46, 6177.
[13]
Shi, J.-L.; Yuan, T.; Zheng, M.-F.; Wang, X.-C. ACS Catal. 2021, 11, 3040.
[14]
(a) Huang, H.; Yu, C.-G.; Zhang, Y.-T.; Zhang, Y.-Q.; Mariano, P. S.; Wang, W. J. Am. Chem. Soc. 2017, 139, 9799.
[14]
(b) Tian, H.-T.; Yang, H.; Tian, C.; An, G.-H.; Li, G.-M. Org. Lett. 2020, 22, 7709.
[14]
(c) Zhao, B.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.
[14]
(d) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
[14]
(e) Yang, H.; Tian, C.; Qiu, D.-S.; Tian, H.-T.; An, G.-H.; Li, G.-M. Org. Chem. Front. 2019, 6, 2365.
[14]
(f) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
[14]
(g) Huang, H.; Li, X.-M.; Yu, C.-G.; Zhang, Y.-T.; Mariano, P. S.; Wang, W. Angew. Chem., nt. Ed. 2017, 56, 1500.
[14]
(h) Yi, R.-N.; He, W.-M. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
[14]
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
[15]
(a) Shirase, S.; Tamaki, S.; Shinohara, K.; Hirosawa, K.; Tsurugi, H.; Satoh, T.; Mashima, K. J. Am. Chem. Soc. 2020, 142, 5668.
[15]
(b) Bazyar, Z.; Hosseini-Sarvari, M. J. Org. Chem. 2019, 84, 13503.
文章导航

/