有机化学 ›› 2021, Vol. 41 ›› Issue (12): 4725-4731.DOI: 10.6023/cjoc202111014 上一篇 下一篇
所属专题: 有机光催化虚拟合辑; 绿色合成化学专辑; 热点论文虚拟合集
研究论文
何宇航, 杨慧, 高冬旭, 马嘉慧, 邵亚敏, 安光辉*(), 李光明*()
收稿日期:
2021-11-06
修回日期:
2021-12-11
发布日期:
2021-12-15
通讯作者:
安光辉, 李光明
基金资助:
Yuhang He, Hui Yang, Dongxu Gao, Jiahui Ma, Yamin Shao, Guanghui An(), Guangming Li()
Received:
2021-11-06
Revised:
2021-12-11
Published:
2021-12-15
Contact:
Guanghui An, Guangming Li
Supported by:
文章分享
报道了无金属可见光诱导的苯乙酸衍生物脱羧. 在无添加剂条件下, 使用廉价的氘源成功地实现了酸的直接脱羧单氘化. 此外, 在空气存在时, 类似的催化体系能够通过脱羧氧化生成酮.
何宇航, 杨慧, 高冬旭, 马嘉慧, 邵亚敏, 安光辉, 李光明. 可见光介导无金属的苯乙酸衍生物脱羧氘代[J]. 有机化学, 2021, 41(12): 4725-4731.
Yuhang He, Hui Yang, Dongxu Gao, Jiahui Ma, Yamin Shao, Guanghui An, Guangming Li. Visible Light-Mediated Metal-Free Decarboxylative Deuteration of Carboxylic Acid[J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4725-4731.
Entry | Base | Solvent | Yieldb/% of 2a/3a |
---|---|---|---|
1 | Cs2CO3 | DMSO | 63/— |
2c | Cs2CO3 | DMSO | 12/— |
3d | Cs2CO3 | DMSO | 5/— |
4e | Cs2CO3 | DMSO | 8/— |
5 | K2CO3 | DMSO | 6/— |
6 | CsOAc | DMSO | 28/— |
7 | CsF | DMSO | 55/— |
8 | CsHCO3 | DMSO | 22/— |
9f | Cs2CO3 | DMSO | 60/— |
10 | Cs2CO3 | DMF | 43/— |
11 | Cs2CO3 | MeCN | 34/— |
12 | Cs2CO3 | DCE | 27/— |
13 | Cs2CO3 | MeCOOEt | 9/— |
14 | Cs2CO3 | CH2Cl2 | 7/— |
15g | Cs2CO3 | DMSO | 5/20 |
16h | Cs2CO3 | DMSO | —/50 |
17h | CsOAc | DMSO | —/15 |
18h | CsF | DMSO | —/19 |
19h | Cs2CO3 | MeCN | —/16 |
20h | Cs2CO3 | DMF | —/18 |
21i | Cs2CO3 | DMSO | —/54 |
Entry | Base | Solvent | Yieldb/% of 2a/3a |
---|---|---|---|
1 | Cs2CO3 | DMSO | 63/— |
2c | Cs2CO3 | DMSO | 12/— |
3d | Cs2CO3 | DMSO | 5/— |
4e | Cs2CO3 | DMSO | 8/— |
5 | K2CO3 | DMSO | 6/— |
6 | CsOAc | DMSO | 28/— |
7 | CsF | DMSO | 55/— |
8 | CsHCO3 | DMSO | 22/— |
9f | Cs2CO3 | DMSO | 60/— |
10 | Cs2CO3 | DMF | 43/— |
11 | Cs2CO3 | MeCN | 34/— |
12 | Cs2CO3 | DCE | 27/— |
13 | Cs2CO3 | MeCOOEt | 9/— |
14 | Cs2CO3 | CH2Cl2 | 7/— |
15g | Cs2CO3 | DMSO | 5/20 |
16h | Cs2CO3 | DMSO | —/50 |
17h | CsOAc | DMSO | —/15 |
18h | CsF | DMSO | —/19 |
19h | Cs2CO3 | MeCN | —/16 |
20h | Cs2CO3 | DMF | —/18 |
21i | Cs2CO3 | DMSO | —/54 |
[1] |
(a) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Science 2017, 358, 1182.
doi: 10.1126/science.aap9674 |
(b) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., nt. Ed. 2018, 57, 1758.
|
|
[2] |
(a) Zhang, P.-P.; Huang, D.; Newhouse, T. R. J. Am. Chem. Soc. 2020, 142, 1757.
doi: 10.1021/jacs.9b12706 pmid: 26877817 |
(b) Sterckx, H.; De Houwer, J.; Mensch, C.; Herrebout, W.; Tehrani, K. A.; Maes, B. U. W. Beilstein J. Org. Chem. 2016, 12, 144.
doi: 10.3762/bjoc.12.16 pmid: 26877817 |
|
(c) Liu, J.-Z.; Wen, X.-J.; Qin, C.; Li, X.-Y.; Luo, X.; Sun, A.; Zhu, B.-C.; Song, S.; Jiao, N. Angew. Chem., nt. Ed. 2017, 56, 11940.
pmid: 26877817 |
|
[3] |
(a) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., nt. Ed. 2018, 57, 3022.
pmid: 22702889 |
(b) Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., nt. Ed. 2007, 46, 7744.
pmid: 22702889 |
|
(c) Bai, W.; Lee, K.-H.; Tse, S. K. S.; Chan, K. W.; Lin, Z.-Y.; Jia, G.-C. Organometallics 2015, 34, 3686.
doi: 10.1021/acs.organomet.5b00134 pmid: 22702889 |
|
(d) Tse, S. K. S.; Xue, P.; Lau, C. W. S.; Sung, H. H. Y.; Williams, I. D.; Jia, G.-C. Chem.-Eur. J. 2011, 17, 13918.
doi: 10.1002/chem.v17.49 pmid: 22702889 |
|
(e) Neubert, L.; Michalik, D.; Bähn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. J. Am. Chem. Soc. 2012, 134, 12239.
doi: 10.1021/ja3041338 pmid: 22702889 |
|
(f) Hale, L. V. A.; Szymczak, N. K. J. Am. Chem. Soc. 2016, 138, 13489.
doi: 10.1021/jacs.6b07879 pmid: 22702889 |
|
[4] |
Modvig, A.; Andersen, T. L.; Taaning, R. H.; Lindhardt, A. T.; Skrydstrup, T. J. Org. Chem. 2014, 79, 5861.
doi: 10.1021/jo500801t |
[5] |
(a) Cook, A.; Prakash, S.; Zheng, Y.-L.; Newman, S. G. J. Am. Chem. Soc. 2020, 142, 8109.
doi: 10.1021/jacs.0c02405 |
(b) Eisele, P.; Ullwer, F.; Scholz, S.; Plietker, B. Chem.-Eur. J. 2019, 25, 16550.
doi: 10.1002/chem.v25.72 |
|
(c) Li, H.-Z.; Hou, Y.-X.; Liu, C.-W.; Lai, Z.-M.; Ning, L.; Szostak, R.; Szostak, M.; An, J. Org. Lett. 2020, 22, 1249.
doi: 10.1021/acs.orglett.9b04383 |
|
(d) Zhu, N.-B.; Su, M.; Wan, W.-M.; Li, Y.-J.; Bao, H.-L. Org. Lett. 2020, 22, 991.
doi: 10.1021/acs.orglett.9b04536 |
|
(e) Ding, Y.-X.; Luo, S.-H.; Weng, C.-Q.; An, J. J. Org. Chem. 2019, 84, 15098.
doi: 10.1021/acs.joc.9b02056 |
|
(f) Li, H.-Z.; Zhang, B.; Dong, Y.-H.; Liu, T.; Zhang, Y.-T.; Nie, H.-Y.; Yang, R.-Y.; Ma, X.-D.; Ling, Y.; An, J. Tetrahedron Lett. 2017, 58, 2757.
doi: 10.1016/j.tetlet.2017.05.092 |
|
[6] |
(a) Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.
doi: 10.1039/c1cs15147a pmid: 21792454 |
(b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
doi: 10.1039/c1cs15093f pmid: 21792454 |
|
(c) Xie, L.-Y.; Bai, Y.-S.; Xu, X.-Q.; Peng, X.; Tang, H.-S.; Huang, Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Green Chem. 2020, 22, 1720.
doi: 10.1039/C9GC03899J pmid: 21792454 |
|
(d) Xie, L.-Y.; Peng, S.; Yang, L.-H.; Peng, C.; Lin, Y.-W.; Yu, X.; Cao, Z.; Peng, Y.-Y.; He, W.-M. Green Chem. 2021, 23, 374.
doi: 10.1039/D0GC02844D pmid: 21792454 |
|
(e) Zhao, F.; Guo, S.; Zhang, Y.; Sun, T.; Yang, B.; Ye, Y.; Sun, K. Org. Chem. Front. 2021, DOI: 10.1039/d1qo01425k.
doi: 10.1039/d1qo01425k pmid: 21792454 |
|
(f) Wang, X.; Li, G.-F.; Sun, K.; Zhang, B. Chin. J. Org. Chem. 2020, 40, 913. (in Chinese)
doi: 10.6023/cjoc202002040 pmid: 21792454 |
|
( 王薪, 李国锋, 孙凯, 张冰, 有机化学, 2020, 40, 913.)
doi: 10.6023/cjoc202002040 pmid: 21792454 |
|
(g) Sun, K.; Li, G.-F.; Li, Y.-Y.; Yu, J.; Zhao, Q.; Zhang, Z.-G.; Zhang, G.-S. Adv. Synth. Catal. 2020, 362, 1947.
doi: 10.1002/adsc.v362.10 pmid: 21792454 |
|
(h) Bi, M.-X.; Qian, P.; Wang, Y.-K.; Zha, Z.-G.; Wang, Z.-Y. Chin. Chem. Lett. 2017, 28, 1159.
doi: 10.1016/j.cclet.2017.04.030 pmid: 21792454 |
|
[7] |
(a) Liu, C.-B.; Chen, Z.-X.; Su, C.-L.; Zhao, X.-X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.-B.; Peng, X.-W.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Nat. Commun. 2018, 9, 80.
doi: 10.1038/s41467-017-02551-8 |
(b) Liu, C.-B.; Han, S.-Y.; Li, M.-Y.; Chong, X.-D.; Zhang, B. Angew. Chem., nt. Ed. 2020, 59, 18527.
|
|
(c) Dong, Y.-Y.; Su, Y.-L.; Du, L.-L.; Wang, R.-F.; Zhang, L.; Zhao, D.-B.; Xie, W. ACS Nano 2019, 13, 10754.
doi: 10.1021/acsnano.9b05523 |
|
[8] |
Matsubara, S.; Yokota, Y.; Oshima, K. Org. Lett. 2004, 6, 2071.
pmid: 15176821 |
[9] |
Rudzki, M.; Alcalde-Aragonés, A.; Dzik, W. I.; Rodríguez, N.; Gooßen, L. J. Synthesis 2012, 44, 184.
|
[10] |
(a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/b913880n pmid: 20532341 |
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., nt. Ed. 2012, 51, 6828.
pmid: 20532341 |
|
(c) He, W.-M.; Cui, X.-L. Chin. Chem. Lett. 2021, 32, 1589.
doi: 10.1016/j.cclet.2021.03.013 pmid: 20532341 |
|
(d) Zhao, Q.-Q.; Chen, J.-R. Chin. J. Org. Chem. 2021, 41, 871. (in Chinese)
doi: 10.6023/cjoc202100016 pmid: 20532341 |
|
( 赵全庆, 陈加荣, 有机化学, 2021, 41, 871.)
doi: 10.6023/cjoc202100016 pmid: 20532341 |
|
(e) Liu, X.; Li, W.; Zhuang, C.-Z.; Cao, H. Chin. J. Org. Chem. 2021, 41, 3459. (in Chinese)
doi: 10.6023/cjoc202103032 pmid: 20532341 |
|
( 刘想, 李文, 庄灿展, 曹华, 有机化学, 2021, 41, 3459.)
doi: 10.6023/cjoc202103032 pmid: 20532341 |
|
(f) Wang, X.; Zhang, Y.; Sun, K.; Meng, J.-P.; Zhang, B. Chin. J. Org. Chem. 2021, 41, 4588. (in Chinese)
pmid: 20532341 |
|
( 王薪, 张艳, 孙凯, 孟建萍, 张冰, 有机化学, 2021, 41, 4588.)
pmid: 20532341 |
|
(g) Wang, S.-W.; Yu, J.; Zhou, Q.-Y.; Chen, S.-Y.; Xu, Z.-H.; Tang, S. ACS Sustainable Chem. Eng. 2019, 7, 10154.
doi: 10.1021/acssuschemeng.9b02178 pmid: 20532341 |
|
(h) Yang, H.-Q.; Chen, Q.-Q.; Liu, F.-L.; Shi, R.; Chen, Y. Chin. Chem. Lett. 2021, 32, 676.
doi: 10.1016/j.cclet.2020.06.022 pmid: 20532341 |
|
(i) Kong, Y.-L.; Xu, W.-X.; Liu, X.-H.; Weng, J.-Q. Chin. Chem. Lett. 2020, 31, 3245.
doi: 10.1016/j.cclet.2020.05.022 pmid: 20532341 |
|
(j) Xie, L.-Y.; Liu, Y.-S.; Ding, H.-R.; Gong, S.-F.; Tan, J.-X.; He, J.-Y.; Cao, Z.; He, W.-M. Chin. J. Catal. 2020, 41, 1168.
doi: 10.1016/S1872-2067(19)63526-6 pmid: 20532341 |
|
(k) Meng, X.-X.; Kang, Q.-Q.; Zhang, J.-Y.; Li, Q.; Wei, W.-T.; He, W.-M.. Green Chem. 2020, 22, 1388.
doi: 10.1039/C9GC03769A pmid: 20532341 |
|
(l) Gui, Q.-W.; Teng, F.; Li, Z.-C.; Xiong, Z.-Y.; Jin, X.-F.; Liu, H.-Y.; Lin, Y.-W.; Cao, Z.; He, W.-M. Chin. Chem. Lett. 2021, 32, 1907.
doi: 10.1016/j.cclet.2021.01.021 pmid: 20532341 |
|
[11] |
Patra, T.; Mukherjee, S.; Ma, J.; Strieth-Kalthoff, F.; Glorius, F. Angew. Chem., nt. Ed. 2019, 58, 10514.
|
[12] |
(a) Li, N.; Ning, Y.-Y.; Wu, X.-P.; Xie, J.; Li, W.-P.; Zhu, C.-J. Chem. Sci. 2021, 12, 5505.
doi: 10.1039/D1SC00528F |
(b) Itou, T.; Yoshimi, Y.; Nishikawa, K.; Morita, T.; Okada, Y.; Ichinose, N.; Hatanaka, M. Chem. Commun. 2010, 46, 6177.
doi: 10.1039/c0cc01464h |
|
[13] |
Shi, J.-L.; Yuan, T.; Zheng, M.-F.; Wang, X.-C. ACS Catal. 2021, 11, 3040.
doi: 10.1021/acscatal.0c05211 |
[14] |
(a) Huang, H.; Yu, C.-G.; Zhang, Y.-T.; Zhang, Y.-Q.; Mariano, P. S.; Wang, W. J. Am. Chem. Soc. 2017, 139, 9799.
doi: 10.1021/jacs.7b05082 pmid: 28692260 |
(b) Tian, H.-T.; Yang, H.; Tian, C.; An, G.-H.; Li, G.-M. Org. Lett. 2020, 22, 7709.
doi: 10.1021/acs.orglett.0c02912 pmid: 28692260 |
|
(c) Zhao, B.; Shang, R.; Cheng, W.-M.; Fu, Y. Org. Chem. Front. 2018, 5, 1782.
doi: 10.1039/C8QO00253C pmid: 28692260 |
|
(d) Luo, J.; Zhang, J. ACS Catal. 2016, 6, 873.
doi: 10.1021/acscatal.5b02204 pmid: 28692260 |
|
(e) Yang, H.; Tian, C.; Qiu, D.-S.; Tian, H.-T.; An, G.-H.; Li, G.-M. Org. Chem. Front. 2019, 6, 2365.
doi: 10.1039/c9qo00495e pmid: 28692260 |
|
(f) Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Chem. Commun. 2019, 55, 5408.
doi: 10.1039/C9CC01047E pmid: 28692260 |
|
(g) Huang, H.; Li, X.-M.; Yu, C.-G.; Zhang, Y.-T.; Mariano, P. S.; Wang, W. Angew. Chem., nt. Ed. 2017, 56, 1500.
pmid: 28692260 |
|
(h) Yi, R.-N.; He, W.-M. Chin. J. Org. Chem. 2021, 41, 1267. (in Chinese)
doi: 10.6023/cjoc202100022 pmid: 28692260 |
|
( 易荣楠, 何卫民, 有机化学, 2021, 41, 1267.)
doi: 10.6023/cjoc202100022 pmid: 28692260 |
|
[15] |
(a) Shirase, S.; Tamaki, S.; Shinohara, K.; Hirosawa, K.; Tsurugi, H.; Satoh, T.; Mashima, K. J. Am. Chem. Soc. 2020, 142, 5668.
doi: 10.1021/jacs.9b12918 pmid: 31523945 |
(b) Bazyar, Z.; Hosseini-Sarvari, M. J. Org. Chem. 2019, 84, 13503.
doi: 10.1021/acs.joc.9b01759 pmid: 31523945 |
[1] | 李路瑶, 贺忠文, 张振国, 贾振华, 罗德平. 三芳基碳正离子在有机合成中的应用[J]. 有机化学, 2024, 44(2): 421-437. |
[2] | 赵红琼, 于淼, 宋冬雪, 贾琦, 刘颖杰, 季宇彬, 许颖. 羧酸脱羧羟基化反应研究进展[J]. 有机化学, 2024, 44(1): 70-84. |
[3] | 鄢伯钰, 吴阶良, 邓金飞, 陈丹, 叶秀深, 姚秋丽. 光诱导醇的直接脱羟基衍生化研究进展[J]. 有机化学, 2023, 43(9): 3055-3066. |
[4] | 王熠, 张键, 刘飏子, 罗晓燕, 邓卫平. 钯催化不对称[3+4]环加成构建吲哚并环庚烷[J]. 有机化学, 2023, 43(8): 2864-2877. |
[5] | 田钰, 张娟, 高文超, 常宏宏. 二甲亚砜作为甲基化试剂在有机合成中的应用[J]. 有机化学, 2023, 43(7): 2391-2406. |
[6] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[7] | 杜琳琳, 张华. 芳烃与烷烃化合物参与的光化学与电化学硼化反应[J]. 有机化学, 2023, 43(5): 1726-1741. |
[8] | 窦谦, 汪太民, 房丽晶, 翟宏斌, 程斌. 光诱导铁催化在有机合成中的应用研究进展[J]. 有机化学, 2023, 43(4): 1386-1415. |
[9] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[10] | 纪健, 刘进华, 管丛, 陈绪文, 赵芸, 刘顺英. 原位生成的磺酸催化N-磺酰基-1,2,3-三氮唑与醇偶联高区域选择性合成N2-取代1,2,3-三氮唑[J]. 有机化学, 2023, 43(3): 1168-1176. |
[11] | 马彪, 章淼淼, 李占宇, 彭进松, 陈春霞. 无过渡金属催化的Suzuki-Type交叉偶联反应研究进展[J]. 有机化学, 2023, 43(2): 455-470. |
[12] | 王永玲, 张铁欣, 张栩铭, 孙晗扬, 冷津瑶, 李亚明. 可见光催化N-芳基乙醛酸亚胺脱羧烷基化合成非天然氨基酸衍生物[J]. 有机化学, 2023, 43(12): 4284-4293. |
[13] | 肖朵朵, 张建涛, 周鹏, 刘卫兵. 无金属条件下芳基酮与二甲亚砜的α-C(sp3)—H亚甲基化反应合成γ-酮亚砜[J]. 有机化学, 2023, 43(11): 3900-3906. |
[14] | 李芳绍, 肖晶, 吴小芳, 王晓熠, 邓金凤, 唐子龙. 无金属条件下酰胺和酯参与的2-取代苯并噁唑衍生物的合成[J]. 有机化学, 2022, 42(6): 1778-1785. |
[15] | 张智鑫, 翟彤仪, 朱伯汉, 钱鹏程, 叶龙武. 无金属催化炔酰胺分子内[4+2]环化反应合成四氢吲哚衍生物[J]. 有机化学, 2022, 42(5): 1501-1508. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||