综述与进展

N—N键合成方法的研究进展

  • 赵伟哲 ,
  • 许佳栗 ,
  • 杨帆 ,
  • 曾祥华
展开
  • 嘉兴学院生物与化学工程学院 浙江嘉兴 314001

收稿日期: 2021-11-11

  修回日期: 2021-12-16

  网络出版日期: 2022-01-11

基金资助

大学生研究训练计划(CD8517211375); 及浙江省自然科学基金(LY17B030011)

Advances on the Synthesis of N—N Bonds

  • Weizhe Zhao ,
  • Jiali Xu ,
  • Fan Yang ,
  • Xianghua Zeng
Expand
  • College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001
*Corresponding author. E-mail:

Received date: 2021-11-11

  Revised date: 2021-12-16

  Online published: 2022-01-11

Supported by

Students Research Training(CD8517211375); National Natural Science Foundation of Zhejiang Province(LY17B030011)

摘要

N—N键广泛存在于药物、天然产物和有机功能材料中, 如何高效构建N—N键是有机合成的一个重要研究方向. 基于含氨基、氰基、硝基和叠氮基等含氮基团的有机化合物非常多, 直接利用这些含氮基团进行N—N键偶联为合成含N—N键结构单元的有机化合物提供了新的策略. 综述了近年来发展的分子间和分子内构建N—N键的合成方法, 并且对该方法存在的难点以及未来发展方向进行了展望.

本文引用格式

赵伟哲 , 许佳栗 , 杨帆 , 曾祥华 . N—N键合成方法的研究进展[J]. 有机化学, 2022 , 42(5) : 1336 -1345 . DOI: 10.6023/cjoc202111019

Abstract

Nitrogen-nitrogen bonds are widely found in drugs, nature products and organic materials. Design and synthesis of nitrogen-nitrogen motifs with high efficiency have always been an important issue in organic chemistry. The nitrogen sources such as amines, nitriles, nitroso, and azides or other N-functionalized reagents, are commonly exist in organic compounds. Direct N-N coupling of these nitrogen sources provides a more convergent synthesis strategy to produce different heterocycles and hydrazines containing the N-N motif. In this paper, the intermolecular and intramolecular formation of N—N bond in recent years is reviewed, and the difficulties and future development of this method are prospected.

参考文献

[1]
(a) Blair, L. M.; Sperry, J. N. J. Nat. Prod. 2013, 76, 794.
[1]
(b) Zhou, C.-H.; Wang, Y. Curr. Med. Chem. 2012, 19, 239.
[1]
(c) Ku?cu?kgu?zel, S?. G.; S?enkardes, S. Eur. J. Med. Chem. 2015, 97, 786.
[1]
(d) Waring, D. R.; Hallas, G. The Chemistry and Application of Dyes, Springer Science & Business Media, New York, 2013.
[2]
(a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
[2]
(b) Guo, Q. H.; Lu, Z. Synthesis 2017, 49, 3835.
[2]
(c) Wolter, M., Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
[3]
Chattaway, F. D.; Ingle, H. J. Chem. Soc., Trans. 1895, 67, 1090.
[4]
Kajimoto, T.; Takahashi, H.; Tsuji, J. Bull. Chem. Soc. Jpn. 1982, 55, 3673.
[5]
Li, Z.; Li, B.; Li, C. Wang, H. Chem. Res. 2011, 22, 1. (in Chinese)
[5]
(李宗耀, 李彪, 李春丽, 王华, 化学研究, 2011, 22, 1.)
[6]
Zhu, Y.; Shi, Y. Org. Lett. 2013, 15, 1942.
[7]
Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
[8]
Yin, D.; Jin, J. Eur. J. Org. Chem. 2019, 5646.
[9]
Ren, L.; Wang, M.; Fang, B.; Yu, W.; Chang, J. Org. Biomol. Chem. 2019, 17, 3446.
[10]
Lv, S.; Han, X.; Wang, J.-Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Angew. Chem., Int. Ed. 2020, 59, 11583.
[11]
Zhao, W.; Zeng, X.; Huang, L.; Qiu, S.; Xie, J.; Yu, H.; Wei, Y. Chem. Commun. 2021, 57, 7677.
[12]
Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
[13]
Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z. Synlett 2011, 569.
[14]
Reddy, C. B. R.; Reddy, S. R.; Naidu, S. Catal. Commun. 2014, 56, 50.
[15]
Breising, V. M.; Kayser, J. M.; Kehl, A.; Schollmeyer, D.; Liermann, J. C.; Waldvogel, S. R. Chem. Commun. 2020, 56, 4348.
[16]
Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nat. Chem. 2021, 13, 378.
[17]
Vemuri, P. Y.; Patureau, F. W. Org. Lett. 2021, 23, 3902.
[18]
Ou, Y.; Yang, T.; Tang, N.; Yin, S.-F.; Kambe, N.; Qiu, R. Org. Lett. 2021, 23, 6417.
[19]
Li, G.; Miller, S. P.; Radosevich, A. T. J. Am. Chem. Soc. 2021, 143, 14464.
[20]
Ueda, S.; Nagasawa, H. J. Am. Chem. Soc. 2009, 131, 15080.
[21]
Meng, X.; Yu, C.; Zhao, P. RSC Adv. 2014, 4, 8612.
[22]
Mu, Q.-C.; Lv, J.-Y.; Chen, M.-Y.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, L.-W. RSC Adv. 2017, 7, 37208.
[23]
Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2013, 52, 13324.
[24]
Chen, Z.; Yan, Q.; Liu, Z.; Zhang, Y. Chem.-Eur. J. 2014, 20, 17635.
[25]
Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.
[26]
Panda, S.; Maity, P.; Manna, D. Org. Lett. 2017, 19, 1534.
[27]
Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7790.
[28]
Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Chem. Commun. 2014, 50, 7677.
[29]
Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16 1350.
[30]
Pearce, A. J.; Harkins, R. P.; Reiner, B. R.; Wotal, A. C.; Dunscomb, R. J.; Tonks, I. A. J. Am. Chem. Soc. 2020, 142, 4390.
[31]
Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem., Int. Ed. 2016, 55, 307.
[32]
Zheng, Q.-Z.; Feng, P.; Liang, Y.-F.; Jiao, N. Org. Lett. 2013, 15, 4262.
[33]
Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
[34]
Wang, Q.; Li, X. Org. Lett. 2016, 18, 2102.
[35]
Li, L.; Wang, L.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.
[36]
Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.
[37]
Zhu, J. S.; Li, C. J.; Tsui, K. Y.; Kraemer, N.; Son, J.; Haddadin, M. J.; Tantillo, D. J.; Kurth, M. J. J. Am. Chem. Soc. 2019, 141, 6247.
[38]
Klenov, M. S.; Guskov, A. A.; Anikn, O. V.; Churakov, A. M.; Strelenko, Y. A.; Fedyanin, I. V.; Lyssenko, K. A.; Tartakovsky, V. A. Angew. Chem., Int. Ed. 2016, 55, 11472.
[39]
Mondal, R. R.; Klhamarui, S.; Maiti, D. K. Org. Lett. 2017, 19, 5964.
[40]
Cai, Y.-M.; Zhang, X.; An, C.; Yang, Y.-F.; Liu, W.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Chem. Front. 2019, 6, 1481.
[41]
Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 3501.
[42]
Dai, G.; Yang, L.; Zhou, W. Org. Chem. Front. 2017, 4, 229.
[43]
Liu, S.; Xu, L.; Wei, Y. J. Org. Chem. 2019, 84, 1596.
[44]
Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Org. Lett. 2010, 12, 2884.
[45]
Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. Chem. Commun. 2011, 47, 10133.
[46]
Liu, J.; Liu, N.; Yang, Q.; Wang, L. Org. Chem. Front. 2021, 8, 5296.
[47]
Hutchinson, I.; Stevens, M. F. G. Org. Biomol. Chem. 2007, 5, 114.
[48]
Lin, W.-C.; Yang, D.-Y. Org. Lett. 2013, 18, 4862.
[49]
Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6839.
[50]
Sawant, D.; Kumar, R.; Maulik, P. R.; Kundu, B. Org. Lett. 2006, 8, 1525.
[51]
Chen, C.-Y.; Tang, G.; He, F.; Wang, Z.; Jing, H.; Faessler, R. Org. Lett. 2016, 18, 1690.
[52]
Sajadi, M. S.; Darehkordi, A.; Hosseini, S. M. S. Tetrahedron 2021, 84, 132023.
[53]
Evans, L. E.; Cheeseman, M. D.; Jones, K. Org. Lett. 2012, 14, 3546.
[54]
Fu, X.; Huang, P.; Zhou, G.; Hu, Y.; Dong, D. Tetrahedron 2011, 67, 6347.
[55]
Zhang, Z.; Li, J.; Huang, G.; Sun, K.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Chin. J. Chem. 2016, 34, 1309.
[56]
Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 9437.
[57]
Gieshoff, T.; Keh, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
[58]
Zhang, Y.; Duan, D.; Zhong, Y.; Guo, X.-A.; Guo, J.; Gou, J.; Gao, Z.; Yu, B. Org. Lett. 2019, 21, 4960.
[59]
Martin, J. S.; Zeng, X.; Chen, X.; Miller, C.; Han, C.; Lin, Y.; Yamamoto, N.; Wang, X.; Yazdi, S.; Yan, Y.; Beard, M. C.; Yan, Y. J. Am. Chem. Soc. 2021, 143, 11361.
[60]
Daniels, R.; Martin, B. D. J. Org. Chem. 1962, 27, 178.
[61]
Hirayama, T.; Ueda, S.; Okada, T.; Tsurue, N.; Okuda, K.; Nagasawa, H. Chem. Eur. J. 2014, 20, 4156.
[62]
Bartels, B.; Bolas, C. G.; Cueni, P.; Fantasia, S. Gaeng, N.; Trita, A. S. J. Org. Chem. 2015, 80, 1249.
[63]
Fritsche, R. F.; Theumer, G.; Kataeva, O.; Knōlker, H.-J. Angew. Chem., Int. Ed. 2017, 56, 549.
[64]
Kehl, A.; Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Chem. Eur. J. 2018, 24, 590.
[65]
Mei, G.-J.; Wong, J. J.; Zheng, W.; Nangia, A. A.; Houk, K. N.; Lu, Y. Chem 2021, 7, 2743.
文章导航

/