有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1336-1345.DOI: 10.6023/cjoc202111019 上一篇 下一篇
综述与进展
收稿日期:
2021-11-11
修回日期:
2021-12-16
发布日期:
2022-01-11
通讯作者:
曾祥华
基金资助:
Weizhe Zhao, Jiali Xu, Fan Yang, Xianghua Zeng()
Received:
2021-11-11
Revised:
2021-12-16
Published:
2022-01-11
Contact:
Xianghua Zeng
Supported by:
文章分享
N—N键广泛存在于药物、天然产物和有机功能材料中, 如何高效构建N—N键是有机合成的一个重要研究方向. 基于含氨基、氰基、硝基和叠氮基等含氮基团的有机化合物非常多, 直接利用这些含氮基团进行N—N键偶联为合成含N—N键结构单元的有机化合物提供了新的策略. 综述了近年来发展的分子间和分子内构建N—N键的合成方法, 并且对该方法存在的难点以及未来发展方向进行了展望.
赵伟哲, 许佳栗, 杨帆, 曾祥华. N—N键合成方法的研究进展[J]. 有机化学, 2022, 42(5): 1336-1345.
Weizhe Zhao, Jiali Xu, Fan Yang, Xianghua Zeng. Advances on the Synthesis of N—N Bonds[J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1336-1345.
[1] |
(a) Blair, L. M.; Sperry, J. N. J. Nat. Prod. 2013, 76, 794.
doi: 10.1021/np400124n pmid: 22320301 |
(b) Zhou, C.-H.; Wang, Y. Curr. Med. Chem. 2012, 19, 239.
pmid: 22320301 |
|
(c) Kücu̧kgüzel, Ş. G.; Şenkardes, S. Eur. J. Med. Chem. 2015, 97, 786.
doi: 10.1016/j.ejmech.2014.11.059 pmid: 22320301 |
|
(d) Waring, D. R.; Hallas, G. The Chemistry and Application of Dyes, Springer Science & Business Media, New York, 2013.
pmid: 22320301 |
|
[2] |
(a) Ragnarsson, U. Chem. Soc. Rev. 2001, 30, 205.
doi: 10.1039/b010091a pmid: 11700143 |
(b) Guo, Q. H.; Lu, Z. Synthesis 2017, 49, 3835.
doi: 10.1055/s-0036-1588512 pmid: 11700143 |
|
(c) Wolter, M., Klapars, A.; Buchwald, S. L. Org. Lett. 2001, 3, 3803.
pmid: 11700143 |
|
[3] |
Chattaway, F. D.; Ingle, H. J. Chem. Soc., Trans. 1895, 67, 1090.
|
[4] |
Kajimoto, T.; Takahashi, H.; Tsuji, J. Bull. Chem. Soc. Jpn. 1982, 55, 3673.
doi: 10.1246/bcsj.55.3673 |
[5] |
Li, Z.; Li, B.; Li, C. Wang, H. Chem. Res. 2011, 22, 1. (in Chinese)
doi: 10.1021/ar00157a001 |
(李宗耀, 李彪, 李春丽, 王华, 化学研究, 2011, 22, 1.)
|
|
[6] |
Zhu, Y.; Shi, Y. Org. Lett. 2013, 15, 1942.
doi: 10.1021/ol4005917 |
[7] |
Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
doi: 10.1021/jacs.8b05245 |
[8] |
Yin, D.; Jin, J. Eur. J. Org. Chem. 2019, 5646.
|
[9] |
Ren, L.; Wang, M.; Fang, B.; Yu, W.; Chang, J. Org. Biomol. Chem. 2019, 17, 3446.
doi: 10.1039/C9OB00279K |
[10] |
Lv, S.; Han, X.; Wang, J.-Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Angew. Chem., Int. Ed. 2020, 59, 11583.
doi: 10.1002/anie.202001510 |
[11] |
Zhao, W.; Zeng, X.; Huang, L.; Qiu, S.; Xie, J.; Yu, H.; Wei, Y. Chem. Commun. 2021, 57, 7677.
doi: 10.1039/D1CC02753K |
[12] |
Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
doi: 10.1021/ja5013323 |
[13] |
Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z. Synlett 2011, 569.
|
[14] |
Reddy, C. B. R.; Reddy, S. R.; Naidu, S. Catal. Commun. 2014, 56, 50.
doi: 10.1016/j.catcom.2014.06.025 |
[15] |
Breising, V. M.; Kayser, J. M.; Kehl, A.; Schollmeyer, D.; Liermann, J. C.; Waldvogel, S. R. Chem. Commun. 2020, 56, 4348.
doi: 10.1039/D0CC01052A |
[16] |
Wang, H.; Jung, H.; Song, F.; Zhu, S.; Bai, Z.; Chen, D.; He, G.; Chang, S.; Chen, G. Nat. Chem. 2021, 13, 378.
doi: 10.1038/s41557-021-00650-0 pmid: 33753917 |
[17] |
Vemuri, P. Y.; Patureau, F. W. Org. Lett. 2021, 23, 3902.
doi: 10.1021/acs.orglett.1c01034 pmid: 33974802 |
[18] |
Ou, Y.; Yang, T.; Tang, N.; Yin, S.-F.; Kambe, N.; Qiu, R. Org. Lett. 2021, 23, 6417.
doi: 10.1021/acs.orglett.1c02227 |
[19] |
Li, G.; Miller, S. P.; Radosevich, A. T. J. Am. Chem. Soc. 2021, 143, 14464.
doi: 10.1021/jacs.1c07272 |
[20] |
Ueda, S.; Nagasawa, H. J. Am. Chem. Soc. 2009, 131, 15080.
doi: 10.1021/ja905056z |
[21] |
Meng, X.; Yu, C.; Zhao, P. RSC Adv. 2014, 4, 8612.
doi: 10.1039/c3ra47029f |
[22] |
Mu, Q.-C.; Lv, J.-Y.; Chen, M.-Y.; Bai, X.-F.; Chen, J.; Xia, C.-G.; Xu, L.-W. RSC Adv. 2017, 7, 37208.
doi: 10.1039/C7RA06727E |
[23] |
Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2013, 52, 13324.
doi: 10.1002/anie.201306416 |
[24] |
Chen, Z.; Yan, Q.; Liu, Z.; Zhang, Y. Chem.-Eur. J. 2014, 20, 17635.
doi: 10.1002/chem.201405057 |
[25] |
Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.
doi: 10.1021/jo300592t |
[26] |
Panda, S.; Maity, P.; Manna, D. Org. Lett. 2017, 19, 1534.
doi: 10.1021/acs.orglett.7b00313 |
[27] |
Neumann, J. J.; Suri, M.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 7790.
doi: 10.1002/anie.201002389 |
[28] |
Chen, B.; Zhu, C.; Tang, Y.; Ma, S. Chem. Commun. 2014, 50, 7677.
doi: 10.1039/c4cc02856b |
[29] |
Wu, Q.; Zhang, Y.; Cui, S. Org. Lett. 2014, 16 1350.
|
[30] |
Pearce, A. J.; Harkins, R. P.; Reiner, B. R.; Wotal, A. C.; Dunscomb, R. J.; Tonks, I. A. J. Am. Chem. Soc. 2020, 142, 4390.
doi: 10.1021/jacs.9b13173 pmid: 32043879 |
[31] |
Huang, H.; Cai, J.; Ji, X.; Xiao, F.; Chen, Y.; Deng, G.-J. Angew. Chem., Int. Ed. 2016, 55, 307.
doi: 10.1002/anie.201508076 |
[32] |
Zheng, Q.-Z.; Feng, P.; Liang, Y.-F.; Jiao, N. Org. Lett. 2013, 15, 4262.
doi: 10.1021/ol402060q |
[33] |
Yu, D.-G.; Suri, M.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 8802.
doi: 10.1021/ja4033555 |
[34] |
Wang, Q.; Li, X. Org. Lett. 2016, 18, 2102.
doi: 10.1021/acs.orglett.6b00727 |
[35] |
Li, L.; Wang, L.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.
doi: 10.1021/acs.orglett.6b01716 |
[36] |
Peng, J.; Xie, Z.; Chen, M.; Wang, J.; Zhu, Q. Org. Lett. 2014, 16, 4702.
doi: 10.1021/ol502010g |
[37] |
Zhu, J. S.; Li, C. J.; Tsui, K. Y.; Kraemer, N.; Son, J.; Haddadin, M. J.; Tantillo, D. J.; Kurth, M. J. J. Am. Chem. Soc. 2019, 141, 6247.
doi: 10.1021/jacs.8b13481 |
[38] |
Klenov, M. S.; Guskov, A. A.; Anikn, O. V.; Churakov, A. M.; Strelenko, Y. A.; Fedyanin, I. V.; Lyssenko, K. A.; Tartakovsky, V. A. Angew. Chem., Int. Ed. 2016, 55, 11472.
doi: 10.1002/anie.201605611 |
[39] |
Mondal, R. R.; Klhamarui, S.; Maiti, D. K. Org. Lett. 2017, 19, 5964.
doi: 10.1021/acs.orglett.7b02844 pmid: 29056045 |
[40] |
Cai, Y.-M.; Zhang, X.; An, C.; Yang, Y.-F.; Liu, W.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Chem. Front. 2019, 6, 1481.
doi: 10.1039/C9QO00071B |
[41] |
Correa, A.; Tellitu, I.; Domínguez, E.; SanMartin, R. J. Org. Chem. 2006, 71, 3501.
doi: 10.1021/jo060070+ |
[42] |
Dai, G.; Yang, L.; Zhou, W. Org. Chem. Front. 2017, 4, 229.
doi: 10.1039/C6QO00573J |
[43] |
Liu, S.; Xu, L.; Wei, Y. J. Org. Chem. 2019, 84, 1596.
doi: 10.1021/acs.joc.8b02548 |
[44] |
Stokes, B. J.; Vogel, C. V.; Urnezis, L. K.; Pan, M.; Driver, T. G. Org. Lett. 2010, 12, 2884.
doi: 10.1021/ol101040p |
[45] |
Hu, J.; Cheng, Y.; Yang, Y.; Rao, Y. Chem. Commun. 2011, 47, 10133.
doi: 10.1039/c1cc13908h |
[46] |
Liu, J.; Liu, N.; Yang, Q.; Wang, L. Org. Chem. Front. 2021, 8, 5296.
doi: 10.1039/D1QO00777G |
[47] |
Hutchinson, I.; Stevens, M. F. G. Org. Biomol. Chem. 2007, 5, 114.
pmid: 17164914 |
[48] |
Lin, W.-C.; Yang, D.-Y. Org. Lett. 2013, 18, 4862.
|
[49] |
Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6839.
doi: 10.1021/jacs.7b03260 |
[50] |
Sawant, D.; Kumar, R.; Maulik, P. R.; Kundu, B. Org. Lett. 2006, 8, 1525.
doi: 10.1021/ol053033y |
[51] |
Chen, C.-Y.; Tang, G.; He, F.; Wang, Z.; Jing, H.; Faessler, R. Org. Lett. 2016, 18, 1690.
doi: 10.1021/acs.orglett.6b00611 |
[52] |
Sajadi, M. S.; Darehkordi, A.; Hosseini, S. M. S. Tetrahedron 2021, 84, 132023.
doi: 10.1016/j.tet.2021.132023 |
[53] |
Evans, L. E.; Cheeseman, M. D.; Jones, K. Org. Lett. 2012, 14, 3546.
doi: 10.1021/ol301561a |
[54] |
Fu, X.; Huang, P.; Zhou, G.; Hu, Y.; Dong, D. Tetrahedron 2011, 67, 6347.
doi: 10.1016/j.tet.2011.05.136 |
[55] |
Zhang, Z.; Li, J.; Huang, G.; Sun, K.; Zhang, G.; Ma, N.; Liu, Q.; Liu, T. Chin. J. Chem. 2016, 34, 1309.
doi: 10.1002/cjoc.201600479 |
[56] |
Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 9437.
doi: 10.1002/anie.201603899 |
[57] |
Gieshoff, T.; Keh, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
doi: 10.1021/jacs.7b07488 pmid: 28792218 |
[58] |
Zhang, Y.; Duan, D.; Zhong, Y.; Guo, X.-A.; Guo, J.; Gou, J.; Gao, Z.; Yu, B. Org. Lett. 2019, 21, 4960.
doi: 10.1021/acs.orglett.9b01396 pmid: 31070375 |
[59] |
Martin, J. S.; Zeng, X.; Chen, X.; Miller, C.; Han, C.; Lin, Y.; Yamamoto, N.; Wang, X.; Yazdi, S.; Yan, Y.; Beard, M. C.; Yan, Y. J. Am. Chem. Soc. 2021, 143, 11361.
doi: 10.1021/jacs.1c00503 |
[60] |
Daniels, R.; Martin, B. D. J. Org. Chem. 1962, 27, 178.
doi: 10.1021/jo01048a044 |
[61] |
Hirayama, T.; Ueda, S.; Okada, T.; Tsurue, N.; Okuda, K.; Nagasawa, H. Chem. Eur. J. 2014, 20, 4156.
doi: 10.1002/chem.201302997 |
[62] |
Bartels, B.; Bolas, C. G.; Cueni, P.; Fantasia, S. Gaeng, N.; Trita, A. S. J. Org. Chem. 2015, 80, 1249.
doi: 10.1021/jo502536t pmid: 25495477 |
[63] |
Fritsche, R. F.; Theumer, G.; Kataeva, O.; Knōlker, H.-J. Angew. Chem., Int. Ed. 2017, 56, 549.
doi: 10.1002/anie.201610168 |
[64] |
Kehl, A.; Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Chem. Eur. J. 2018, 24, 590.
doi: 10.1002/chem.201705578 |
[65] |
Mei, G.-J.; Wong, J. J.; Zheng, W.; Nangia, A. A.; Houk, K. N.; Lu, Y. Chem 2021, 7, 2743.
doi: 10.1016/j.chempr.2021.07.013 |
[1] | 夏登鹏, 罗锦昀, 何林, 蔡志华, 杜广芬. 氮杂环卡宾催化的五氟苯基硫醚的合成[J]. 有机化学, 2024, 44(2): 622-630. |
[2] | 杨爽, 房新强. 氮杂环卡宾催化实现的动力学拆分近期研究进展[J]. 有机化学, 2024, 44(2): 448-480. |
[3] | 蔡远林, 吕亚, 聂桂花, 金智超, 池永贵. 氮杂环卡宾催化合成氰基化合物的研究进展[J]. 有机化学, 2023, 43(9): 3135-3145. |
[4] | 陈祖良, 魏颖静, 张俊良. 供体-受体氮杂环丙烷碳-碳键断裂的环加成反应研究进展[J]. 有机化学, 2023, 43(9): 3078-3088. |
[5] | 冯莹珂, 王贺, 崔梦行, 孙然, 王欣, 陈阳, 李蕾. 可见光诱导的新型官能化芳基异腈化合物的二氟烷基化环化反应[J]. 有机化学, 2023, 43(8): 2913-2925. |
[6] | 杨亮茹, 郭梦丽, 袁金伟, 王佳美, 夏宇婷, 肖咏梅, 毛璞. 钳形氮杂环卡宾金属络合物的研究进展[J]. 有机化学, 2023, 43(6): 2002-2025. |
[7] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[8] | 刘婷婷, 胡宇才, 沈安. 亚胺配体协同氮杂环卡宾钯配合物催化碳碳偶联反应的作用机制[J]. 有机化学, 2023, 43(2): 622-628. |
[9] | 郝二军, 丁笑波, 王珂新, 周红昊, 杨启亮, 石磊. 氮杂环丙烷与不饱和化合物发生[3+2]扩环反应的研究进展[J]. 有机化学, 2023, 43(12): 4057-4074. |
[10] | 张雨杉, 桓臻, 杨金东, 程津培. 氮杂环磷氢试剂的氢转移活性研究进展[J]. 有机化学, 2023, 43(11): 3806-3825. |
[11] | 侯学会, 李议慧, 张庆玲, 刘俊桃, 陈亚静. 1,4-吡啶硫内鎓盐在有机合成中的研究与应用[J]. 有机化学, 2023, 43(11): 3844-3860. |
[12] | 覃小婷, 邹宁, 农彩梅, 莫冬亮. 九元氮杂环化合物合成最新研究进展[J]. 有机化学, 2023, 43(1): 130-155. |
[13] | 张建涛, 张聪, 郑梓栋, 周鹏, 刘卫兵. 亚砜叶立德参与构建五/六元氮杂环的反应研究进展[J]. 有机化学, 2022, 42(9): 2745-2759. |
[14] | 高秋珊, 李蒙, 伍婉卿. 过渡金属催化的异腈插入反应研究进展[J]. 有机化学, 2022, 42(9): 2659-2681. |
[15] | 赵薇, 刘京, 何向奎, 蒋豪, 陆良秋, 肖文精. 氮杂环卡宾(NHC)催化的联芳基二醛去对称化构建轴手性醛类化合物[J]. 有机化学, 2022, 42(8): 2504-2514. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||