手性方酰胺催化环状1,3-二羰基化合物对β,γ-不饱和-α-酮酯的不对称Michael加成反应
收稿日期: 2021-11-22
修回日期: 2022-01-02
网络出版日期: 2022-01-21
基金资助
河南省自然科学基金(202300410188); 河南省高等学校青年骨干教师培养计划(2021GGJS173)
Chiral Squaramide Catalyzed Enantioselective Michael Addition of Cyclic 1,3-Diketones to β,γ-Unsaturated α-Keto Esters
Received date: 2021-11-22
Revised date: 2022-01-02
Online published: 2022-01-21
Supported by
Natural Science Foundation of Henan Province(202300410188); Training Plan for Young Key Teachers in Colleges and Universities in Henan Province(2021GGJS173)
发展了新型手性双功能叔胺-方酰胺催化的环状1,3-二羰基化合物和β,γ-不饱和-α-酮酯之间的不对称Michael加成反应, 反应条件温和, 底物适用范围广泛, 相应产物的产率和对映选择性分别高达97%和97% ee, 为合成和医药上极为重要的手性色烯衍生物的立体选择性合成提供了一种实用的方法.
关键词: Michael加成; 有机催化; 叔胺-方酰胺; 环状1,3-二羰基化合物; β,γ-不饱和-α-酮酯
马志伟 , 陈晓培 , 王川川 , 王建玲 , 陶京朝 , 吕全建 . 手性方酰胺催化环状1,3-二羰基化合物对β,γ-不饱和-α-酮酯的不对称Michael加成反应[J]. 有机化学, 2022 , 42(5) : 1520 -1526 . DOI: 10.6023/cjoc202111030
A stereoselective methodology was developed to construct synthetically and pharmaceutically useful chiral chromene derivatives. In the presence of a newly designed bifunctional tertiary amine-squaramide organocatalyst, the Michael addition between cyclic 1,3-diketones and β,γ-unsaturated α-ketoesters occurred smoothly to provide the desired products with high to excellent yields (84%~97%) and enantioselectivies (79%~97% ee). This catalytic protocol was compatible with a range of structurally distinct β,γ-unsaturated α-ketoesters.
[1] | (a) Zhang, Y.; Wang, W. Catal. Sci. Technol. 2012, 2, 42. |
[1] | (b) Gangliang, H.; Xue, L. Curr. Org. Synth. 2017, 14, 568. |
[1] | (c) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247. |
[1] | (d) Shagufta, K.; Ameer Fawad, Z.; Sajjad, A.; Rabia, A.; Iqra, K.; Wajiha, Q.; Attia, M. Curr. Org. Chem. 2020, 24, 1397. |
[1] | (e) Reznikov, A. N.; Klimochkin, Y. N. Synthesis 2020, 52, 781. |
[1] | (f) Das, T.; Mohapatra, S.; Mishra, N. P.; Nayak, S.; Raiguru, B. P. ChemistrySelect 2021, 6, 3745. |
[2] | (a) Rong, Z.-Q.; Jia, M.-Q.; You, S.-L. Org. Lett. 2011, 13, 4080. |
[2] | (b) Ghosh, S. K.; Dhungana, K.; Headley, A. D.; Ni, B. Org. Biomol. Chem. 2012, 10, 8322. |
[2] | (c) Feu, K. S.; Deobald, A. M.; Narayanaperumal, S.; Corrêa, A. G.; Weber Paixão, M. Eur. J. Org. Chem. 2013, 2013, 5917. |
[2] | (d) Huang, H.; Kang, J. Y. Org. Lett. 2016, 18, 4372. |
[2] | (e) Wang, Q.; Wang, W.; Ye, L.; Yang, X.; Li, X.; Zhao, Z.; Li, X. Molecules 2017, 22, 1096. |
[2] | (f) Wang, W.; Ye, L.; Shi, Z.; Zhao, Z.; Li, X. RSC Adv. 2018, 8, 41699. |
[2] | (g) Singha Roy, S. J.; Mukherjee, S. J. Org. Chem. 2018, 83, 12071. |
[2] | (h) Péter, B.; Tamás, N.; Zsolt, R.; György, K. Curr. Org. Chem. 2020, 24, 746. |
[3] | Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev. 2013, 113, 5924. |
[4] | Halland, N.; Velgaard, T.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 5067. |
[5] | (a) Calter, M. A.; Wang, J. Org. Lett. 2009, 11, 2205. |
[5] | (b) Xu, D.-Q.; Wang, Y.-F.; Zhang, W.; Luo, S.-P.; Zhong, A.-G.; Xia, A.-B.; Xu, Z.-Y. Chem.-Eur. J. 2010, 16, 4177. |
[5] | (c) Gao, Y.; Ren, Q.; Wang, L.; Wang, J. Chem.-Eur. J. 2010, 16, 13068. |
[5] | (d) Chen, X.-K.; Zheng, C.-W.; Zhao, S.-L.; Chai, Z.; Yang, Y.-Q.; Zhao, G.; Cao, W.-G. Adv. Synth. Catal. 2010, 352, 1648. |
[5] | (e) Wang, Y.-F.; Wang, K.; Zhang, W.; Zhang, B.-B.; Zhang, C.-X.; Xu, D.-Q. Eur. J. Org. Chem. 2012, 2012, 3691. |
[5] | (f) Rong, C.; Pan, H.; Liu, M.; Tian, H.; Shi, Y. Chem.-Eur. J. 2016, 22, 2887. |
[5] | (g) Dajek, M.; Pruszczyńska, A.; Konieczny, K. A.; Kowalczyk, R. Adv. Synth. Catal. 2020, 362, 3613. |
[5] | (h) Dong, Z.; Feng, J.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Chem.-Eur. J. 2011, 17, 1118. |
[5] | (i) Liu, S.; Xu, Z.-H.; Wang, X.; Zhu, H.-R.; Wang, M.-C. J. Org. Chem. 2019, 84, 13881. |
[5] | (j) Yang, K.; Ma, Z.-Y.; Tong, H.-X.; Sun, X.-Q.; Hu, X.-Y.; Li, Z.-Y. Chin. Chem. Lett. 2020, 31, 3259. |
[5] | (k) Ding, X.; Zhang, X.-D.; Dong, C.-L.; Guan, Z.; He, Y.-H. Catal. Lett. 2018, 148, 757. |
[6] | Ian Storer, R.; Aciro, C.; Jones, L. H. Chem. Soc. Rev. 2011, 40, 2330. |
[7] | Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416. |
[8] | (a) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253. |
[8] | (b) Abdul, R.; Cihangir, T. Curr. Org. Chem. 2016, 20, 2996. |
[8] | (c) Phillips, A. M. F.; Prechtl, M. H. G.; Pombeiro, A. J. L. Catalysts 2021, 11, 569. |
[9] | Ma, Z.-W., Liu, X.-F., Liu, J.-T., Tao, J.-C. Chin. J. Org. Chem. 2018, 38, 183. (in Chinese) |
[9] | (马志伟, 刘晓锋, 刘俊桃, 陶京朝, 有机化学, 2018, 38, 183.) |
[10] | Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010, 49, 153. |
[11] | Ma, Z.-W.; Liu, X.-F.; Sun, B.; Huang, X.-H.; Tao, J.-C. Synthesis 2017, 49, 1307. |
[12] | Song, X.-X.; Liu, J.; Liu, M.-M.; Wang, X.; Zhang, Z.-F.; Wang, M.-C.; Chang, J.-B. Tetrahedron 2014, 70, 5468. |
[13] | Dajek, M.; Kowalczyk, R.; Boratyński, P. J. Catal. Sci. Technol. 2018, 8, 4358. |
/
〈 |
|
〉 |