有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1520-1526.DOI: 10.6023/cjoc202111030 上一篇 下一篇
研究论文
马志伟a,*(), 陈晓培a, 王川川a, 王建玲a, 陶京朝b, 吕全建a,*()
收稿日期:
2021-11-22
修回日期:
2022-01-02
发布日期:
2022-01-20
通讯作者:
马志伟, 吕全建
作者简介:
基金资助:
Zhiwei Maa(), Xiaopei Chena, Chuanchuan Wanga, Jianling Wanga, Jingchao Taob, Quanjian Lüa()
Received:
2021-11-22
Revised:
2022-01-02
Published:
2022-01-20
Contact:
Zhiwei Ma, Quanjian Lü
About author:
Supported by:
文章分享
发展了新型手性双功能叔胺-方酰胺催化的环状1,3-二羰基化合物和β,γ-不饱和-α-酮酯之间的不对称Michael加成反应, 反应条件温和, 底物适用范围广泛, 相应产物的产率和对映选择性分别高达97%和97% ee, 为合成和医药上极为重要的手性色烯衍生物的立体选择性合成提供了一种实用的方法.
马志伟, 陈晓培, 王川川, 王建玲, 陶京朝, 吕全建. 手性方酰胺催化环状1,3-二羰基化合物对β,γ-不饱和-α-酮酯的不对称Michael加成反应[J]. 有机化学, 2022, 42(5): 1520-1526.
Zhiwei Ma, Xiaopei Chen, Chuanchuan Wang, Jianling Wang, Jingchao Tao, Quanjian Lü. Chiral Squaramide Catalyzed Enantioselective Michael Addition of Cyclic 1,3-Diketones to β,γ-Unsaturated α-Keto Esters[J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1520-1526.
Entry | R1 (5) | R2, R3 (6) | 7 | Yieldb/% | eec/% |
---|---|---|---|---|---|
1 | H (5a) | Ph, CH3 (6a) | 7a | 95 | 91 |
2 | H (5a) | 4-CH3C6H4, CH3 (6b) | 7b | 93 | 86 |
3 | H (5a) | 4-CH3OC6H4, CH3 (6c) | 7c | 93 | 90 |
4 | H (5a) | 4-FC6H4, CH3 (6d) | 7d | 90 | 87 |
5 | H (5a) | 4-ClC6H4, CH3 (6e) | 7e | 91 | 88 |
6 | H (5a) | 4-BrC6H4, CH3 (6f) | 7f | 92 | 86 |
7 | H (5a) | 2-Thienyl, CH3 (6g) | 7g | 85 | 82 |
8 | H (5a) | 2-Naphthyl, CH3 (6h) | 7h | 86 | 88 |
9 | H (5a) | Ph, Bn (6i) | 7i | 97 | 89 |
10 | CH3 (5b) | Ph, CH3 (6a) | 8a | 95 | 97 |
11 | CH3 (5b) | 4-CH3C6H4, CH3 (6b) | 8b | 92 | 90 |
12 | CH3 (5b) | 4-CH3OC6H4, CH3 (6c) | 8c | 93 | 90 |
13 | CH3 (5b) | 4-FC6H4, CH3 (6d) | 8d | 94 | 84 |
14 | CH3 (5b) | 4-ClC6H4, CH3 (6e) | 8e | 91 | 89 |
15 | CH3 (5b) | 4-BrC6H4, CH3 (6f) | 8f | 91 | 79 |
16 | CH3 (5b) | 2-Thienyl, CH3 (6g) | 8g | 87 | 84 |
17 | CH3 (5b) | 2-Naphthyl, CH3 (6h) | 8h | 84 | 88 |
18 | CH3 (5b) | Ph, Bn (6i) | 8i | 94 | 88 |
19 | CH3 (5b) | Ph, Et (6j) | 8j | 95 | 84 |
20 | CH3 (5b) | Et, Et (6k) | 8k | 93 | 80 |
Entry | R1 (5) | R2, R3 (6) | 7 | Yieldb/% | eec/% |
---|---|---|---|---|---|
1 | H (5a) | Ph, CH3 (6a) | 7a | 95 | 91 |
2 | H (5a) | 4-CH3C6H4, CH3 (6b) | 7b | 93 | 86 |
3 | H (5a) | 4-CH3OC6H4, CH3 (6c) | 7c | 93 | 90 |
4 | H (5a) | 4-FC6H4, CH3 (6d) | 7d | 90 | 87 |
5 | H (5a) | 4-ClC6H4, CH3 (6e) | 7e | 91 | 88 |
6 | H (5a) | 4-BrC6H4, CH3 (6f) | 7f | 92 | 86 |
7 | H (5a) | 2-Thienyl, CH3 (6g) | 7g | 85 | 82 |
8 | H (5a) | 2-Naphthyl, CH3 (6h) | 7h | 86 | 88 |
9 | H (5a) | Ph, Bn (6i) | 7i | 97 | 89 |
10 | CH3 (5b) | Ph, CH3 (6a) | 8a | 95 | 97 |
11 | CH3 (5b) | 4-CH3C6H4, CH3 (6b) | 8b | 92 | 90 |
12 | CH3 (5b) | 4-CH3OC6H4, CH3 (6c) | 8c | 93 | 90 |
13 | CH3 (5b) | 4-FC6H4, CH3 (6d) | 8d | 94 | 84 |
14 | CH3 (5b) | 4-ClC6H4, CH3 (6e) | 8e | 91 | 89 |
15 | CH3 (5b) | 4-BrC6H4, CH3 (6f) | 8f | 91 | 79 |
16 | CH3 (5b) | 2-Thienyl, CH3 (6g) | 8g | 87 | 84 |
17 | CH3 (5b) | 2-Naphthyl, CH3 (6h) | 8h | 84 | 88 |
18 | CH3 (5b) | Ph, Bn (6i) | 8i | 94 | 88 |
19 | CH3 (5b) | Ph, Et (6j) | 8j | 95 | 84 |
20 | CH3 (5b) | Et, Et (6k) | 8k | 93 | 80 |
[1] |
(a) Zhang, Y.; Wang, W. Catal. Sci. Technol. 2012, 2, 42.
doi: 10.1039/C1CY00334H |
(b) Gangliang, H.; Xue, L. Curr. Org. Synth. 2017, 14, 568.
doi: 10.2174/1570179414666161121124846 |
|
(c) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247.
doi: 10.1002/cjoc.201700745 |
|
(d) Shagufta, K.; Ameer Fawad, Z.; Sajjad, A.; Rabia, A.; Iqra, K.; Wajiha, Q.; Attia, M. Curr. Org. Chem. 2020, 24, 1397.
doi: 10.2174/1385272824999200616123744 |
|
(e) Reznikov, A. N.; Klimochkin, Y. N. Synthesis 2020, 52, 781.
doi: 10.1055/s-0039-1690044 |
|
(f) Das, T.; Mohapatra, S.; Mishra, N. P.; Nayak, S.; Raiguru, B. P. ChemistrySelect 2021, 6, 3745.
doi: 10.1002/slct.202100679 |
|
[2] |
(a) Rong, Z.-Q.; Jia, M.-Q.; You, S.-L. Org. Lett. 2011, 13, 4080.
doi: 10.1021/ol201595f pmid: 27541326 |
(b) Ghosh, S. K.; Dhungana, K.; Headley, A. D.; Ni, B. Org. Biomol. Chem. 2012, 10, 8322.
doi: 10.1039/c2ob26248g pmid: 27541326 |
|
(c) Feu, K. S.; Deobald, A. M.; Narayanaperumal, S.; Corrêa, A. G.; Weber Paixão, M. Eur. J. Org. Chem. 2013, 2013, 5917.
doi: 10.1002/ejoc.201300431 pmid: 27541326 |
|
(d) Huang, H.; Kang, J. Y. Org. Lett. 2016, 18, 4372.
doi: 10.1021/acs.orglett.6b02121 pmid: 27541326 |
|
(e) Wang, Q.; Wang, W.; Ye, L.; Yang, X.; Li, X.; Zhao, Z.; Li, X. Molecules 2017, 22, 1096.
doi: 10.3390/molecules22071096 pmid: 27541326 |
|
(f) Wang, W.; Ye, L.; Shi, Z.; Zhao, Z.; Li, X. RSC Adv. 2018, 8, 41699.
doi: 10.1039/C8RA07809B pmid: 27541326 |
|
(g) Singha Roy, S. J.; Mukherjee, S. J. Org. Chem. 2018, 83, 12071.
doi: 10.1021/acs.joc.8b02051 pmid: 27541326 |
|
(h) Péter, B.; Tamás, N.; Zsolt, R.; György, K. Curr. Org. Chem. 2020, 24, 746.
doi: 10.2174/1385272824666200316122221 pmid: 27541326 |
|
[3] |
Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev. 2013, 113, 5924.
doi: 10.1021/cr4000732 |
[4] |
Halland, N.; Velgaard, T.; Jørgensen, K. A. J. Org. Chem. 2003, 68, 5067.
pmid: 12816459 |
[5] |
(a) Calter, M. A.; Wang, J. Org. Lett. 2009, 11, 2205.
doi: 10.1021/ol900586f |
(b) Xu, D.-Q.; Wang, Y.-F.; Zhang, W.; Luo, S.-P.; Zhong, A.-G.; Xia, A.-B.; Xu, Z.-Y. Chem.-Eur. J. 2010, 16, 4177.
doi: 10.1002/chem.201000094 |
|
(c) Gao, Y.; Ren, Q.; Wang, L.; Wang, J. Chem.-Eur. J. 2010, 16, 13068.
doi: 10.1002/chem.201002202 |
|
(d) Chen, X.-K.; Zheng, C.-W.; Zhao, S.-L.; Chai, Z.; Yang, Y.-Q.; Zhao, G.; Cao, W.-G. Adv. Synth. Catal. 2010, 352, 1648.
doi: 10.1002/adsc.201000045 |
|
(e) Wang, Y.-F.; Wang, K.; Zhang, W.; Zhang, B.-B.; Zhang, C.-X.; Xu, D.-Q. Eur. J. Org. Chem. 2012, 2012, 3691.
doi: 10.1002/ejoc.201200179 |
|
(f) Rong, C.; Pan, H.; Liu, M.; Tian, H.; Shi, Y. Chem.-Eur. J. 2016, 22, 2887.
doi: 10.1002/chem.201503327 |
|
(g) Dajek, M.; Pruszczyńska, A.; Konieczny, K. A.; Kowalczyk, R. Adv. Synth. Catal. 2020, 362, 3613.
doi: 10.1002/adsc.202000455 |
|
(h) Dong, Z.; Feng, J.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Chem.-Eur. J. 2011, 17, 1118.
doi: 10.1002/chem.201002687 |
|
(i) Liu, S.; Xu, Z.-H.; Wang, X.; Zhu, H.-R.; Wang, M.-C. J. Org. Chem. 2019, 84, 13881.
doi: 10.1021/acs.joc.9b02046 |
|
(j) Yang, K.; Ma, Z.-Y.; Tong, H.-X.; Sun, X.-Q.; Hu, X.-Y.; Li, Z.-Y. Chin. Chem. Lett. 2020, 31, 3259.
doi: 10.1016/j.cclet.2020.02.057 |
|
(k) Ding, X.; Zhang, X.-D.; Dong, C.-L.; Guan, Z.; He, Y.-H. Catal. Lett. 2018, 148, 757.
doi: 10.1007/s10562-017-2275-2 |
|
[6] |
Ian Storer, R.; Aciro, C.; Jones, L. H. Chem. Soc. Rev. 2011, 40, 2330.
doi: 10.1039/c0cs00200c pmid: 21399835 |
[7] |
Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.
doi: 10.1021/ja805693p |
[8] |
(a) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253.
doi: 10.1002/adsc.201401003 |
(b) Abdul, R.; Cihangir, T. Curr. Org. Chem. 2016, 20, 2996.
doi: 10.2174/1385272820666160805113749 |
|
(c) Phillips, A. M. F.; Prechtl, M. H. G.; Pombeiro, A. J. L. Catalysts 2021, 11, 569.
doi: 10.3390/catal11050569 |
|
[9] |
Ma, Z.-W., Liu, X.-F., Liu, J.-T., Tao, J.-C. Chin. J. Org. Chem. 2018, 38, 183. (in Chinese)
doi: 10.6023/cjoc201706025 |
(马志伟, 刘晓锋, 刘俊桃, 陶京朝, 有机化学, 2018, 38, 183.)
doi: 10.6023/cjoc201706025 |
|
[10] |
Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010, 49, 153.
doi: 10.1002/anie.200904779 |
[11] |
Ma, Z.-W.; Liu, X.-F.; Sun, B.; Huang, X.-H.; Tao, J.-C. Synthesis 2017, 49, 1307.
doi: 10.1055/s-0036-1588090 |
[12] |
Song, X.-X.; Liu, J.; Liu, M.-M.; Wang, X.; Zhang, Z.-F.; Wang, M.-C.; Chang, J.-B. Tetrahedron 2014, 70, 5468.
doi: 10.1016/j.tet.2014.06.109 |
[13] |
Dajek, M.; Kowalczyk, R.; Boratyński, P. J. Catal. Sci. Technol. 2018, 8, 4358.
doi: 10.1039/C8CY01199K |
[1] | 程春霞, 吴露平, 沙风, 伍新燕. 手性叔膦-酰胺不对称催化香豆素与Morita-Baylis-Hillman碳酸酯之间的插烯烯丙基烷基化反应[J]. 有机化学, 2023, 43(9): 3188-3195. |
[2] | 全翌雯, 蒋心惠, 李文军, 汪舰. 借助有机催化去共轭-羟醛缩合反应来获得α-乙烯基-β-炔基取代的烯醛[J]. 有机化学, 2023, 43(6): 2120-2125. |
[3] | 景科, 张攀科, 徐森苗. 1,4-氮硼杂芳环在有机和过渡金属催化中的应用[J]. 有机化学, 2023, 43(5): 1742-1750. |
[4] | 张心予, 耿慧慧, 张士磊, 王卫, 陈晓蓓. 一种N-杂环卡宾催化合成氘代苯偶姻的方法[J]. 有机化学, 2023, 43(4): 1510-1516. |
[5] | 戴春波, 夏思奇, 陈晓玉, 杨丽敏. 氮杂环卡宾(NHC)催化[4+3]环加成反应构建4-氨基苯并环庚烯内酯[J]. 有机化学, 2023, 43(3): 1084-1090. |
[6] | 张雨杉, 桓臻, 杨金东, 程津培. 氮杂环磷氢试剂的氢转移活性研究进展[J]. 有机化学, 2023, 43(11): 3806-3825. |
[7] | 王兴, 宋倩倩, 陈续玲, 李鹏飞, 齐昀坤, 李文军. 有机催化远程立体控制6-亚甲基-6H-吲哚与异噁唑-5(4H)-酮的氮杂1,8-共轭加成反应[J]. 有机化学, 2022, 42(6): 1722-1734. |
[8] | 吴逾诸, 申盼盼, 段文增, 马玉道. 卡宾催化对亚甲基苯醌的不对称硼化反应的研究[J]. 有机化学, 2022, 42(5): 1483-1492. |
[9] | 姚婷, 李佳燕, 王佳明, 赵常贵. 氮杂环卡宾催化构筑含七元环结构的研究进展[J]. 有机化学, 2022, 42(4): 925-944. |
[10] | 应安国, 白林盛, 侯海亮, 许松林, 鲁小彤, 王丽敏. AlCl3@MNPs催化硫杂Michael加成串联反应研究[J]. 有机化学, 2022, 42(11): 3843-3852. |
[11] | 任红霞, 马萌萌, 黄有. 手性膦催化的氮杂环合成研究进展[J]. 有机化学, 2022, 42(10): 3129-3142. |
[12] | 底慧明, 刘云婷, 马艳榕, 杨鑫悦, 金辉, 张立新. 有机催化不对称合成3,4-二氢吡喃-2-酮和3,4-二氢吡啶-2-酮衍生物研究进展[J]. 有机化学, 2021, 41(6): 2228-2248. |
[13] | 张俊伟, 吴昊, 张伟鑫, 王黎明, 金瑛. 金鸡纳硅醚衍生物有机催化吲哚与靛红的不对称Friedel-Crafts反应[J]. 有机化学, 2021, 41(3): 1187-1192. |
[14] | 姜权彬, 赵晓丹. 手性双官能硫族化合物催化烯烃的不对称亲电硫化反应[J]. 有机化学, 2021, 41(2): 443-454. |
[15] | 刘雪华, 王川川, 王新璐, 马志伟, 孟蕾, 丁德刚, 刘俊桃, 陈亚静. 利用aza-Michael/Michael串联环化反应合成螺巴比妥哌啶酮衍生物[J]. 有机化学, 2021, 41(11): 4450-4458. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||