研究论文

超分子有机框架对分子容器的水相增溶的梯度增强效应

  • 王泽坤 ,
  • 徐子悦 ,
  • 李娟娟 ,
  • 余尚博 ,
  • 王辉 ,
  • 郭东升 ,
  • 张丹维 ,
  • 黎占亭
展开
  • a复旦大学化学系 上海市分子催化和功能材料重点实验室 上海 200438
    b南开大学化学学院 元素有机化学国家重点实验室 天津 300071
    c中国科学院上海有机化学研究所 有机功能分子合成与组装化学重点实验室 上海 200032

收稿日期: 2022-02-28

  修回日期: 2022-03-13

  网络出版日期: 2022-03-22

基金资助

国家自然科学基金(21921003); 国家自然科学基金(21890730); 国家自然科学基金(21890732)

Gradient Enhancement of Supramolecular Organic Framework for Solubilization of Hydrophobic Molecules by Two Molecular Containers in Water

  • Ze-Kun Wang ,
  • Zi-Yue Xu ,
  • Juan-Juan Li ,
  • Shang-Bo Yu ,
  • Hui Wang ,
  • Dong-Sheng Guo ,
  • Dan-Wei Zhang ,
  • Zhan-Ting Li
Expand
  • aDepartment of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438
    bCollege of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071
    cKey Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2022-02-28

  Revised date: 2022-03-13

  Online published: 2022-03-22

Supported by

National Natural Science Foundation of China(21921003); National Natural Science Foundation of China(21890730); National Natural Science Foundation of China(21890732)

摘要

很多功能性有机分子在水中溶解度很小, 限制了它们的实际应用. 水溶性主体的包结是提高有机分子水溶性的重要手段, 但要获得显著的增溶效果, 一般需要主体分子具有很高的浓度. 报道了一种梯度增溶新策略, 即利用一种高水溶性多孔聚合物富集另一个具有增溶作用的主体分子, 提高其局部有效浓度, 实现其增溶作用增强的目的. 为此利用一个水溶性正离子型超分子有机框架, 吸收富集负离子型杯[5]芳烃, 实现了杯[5]芳烃对C60、C70、二茂铁、1,1'-二甲二茂铁及1,1°-二溴二茂铁的增溶作用的进一步提高, 通过吸收富集开环葫芦脲, 实现了后者对紫杉醇, 多西他赛和卡巴他赛的水溶性的进一步提高.

本文引用格式

王泽坤 , 徐子悦 , 李娟娟 , 余尚博 , 王辉 , 郭东升 , 张丹维 , 黎占亭 . 超分子有机框架对分子容器的水相增溶的梯度增强效应[J]. 有机化学, 2022 , 42(7) : 2236 -2242 . DOI: 10.6023/cjoc202202038

Abstract

Many functional organic molecules have very low water-solubility, which remarkably limits their practical applications. The inclusion of water-soluble hosts has been demonstrated as an important strategy to increase the water solubility of organic molecules. However, this strategy usually requires high concentration for the hosts to realize efficient solubilization of guest molecules. Herein a new strategy of gradient solubilization by utilizing a water-soluble porous supramolecular polymer to adsorb or enrich molecular containers to increase their efficient concentration in a confined space is reported. For this aim, a cationic water-soluble supramolecular organic framework was used to include an anionic calix[5]arene or an anionic acyclic cucurbituril. In this way, the supramolecular organic framework was revealed to exhibit significant gradient enhancement for the solubilization of the calix[5]arene host for C60, C70, ferrocene, 1,1'-dimethylferrocene and 1,1'-dibromoferrocene, and the solubilization of the acyclic cucurbituril host for paclitaxel, docetaxel and cabazitaxel.

参考文献

[1]
(a) Brewster, M. E.; Loftsson, T. Adv. Drug Delivery Rev. 2007, 59, 645.
[1]
(b) Rao, V. M.; Stella, V. J. J. Pharm. Sci. 2003, 92, 927.
[2]
(a) Hu, Y.; Qiu, C.; Qin, Y.; Xu, X.; Fan, L. Wang, J.; Jin, Z. Trend. Food Sci. Technol. 2021, 109, 398.
[2]
(b) Jambhekar, S. S.; Breen, P. Drug Delivery Today 2016, 21, 363.
[2]
(c) Qie, S.; Hao, Y.; Liu, Z.; Wang, J.; Xi, J. Acta Chim. Sin. 2020, 78, 232. (in Chinese)
[2]
( 郄淑燕, 郝莹, 刘宗建, 王锦, 席家宁, 化学学报, 2020, 78, 232.)
[3]
(a) Nakahata, M.; Takashima, Y.; Harada, A. Chem. Pharm. Bull. 2017, 65, 330.
[3]
(b) Qi, W.; Ma, C.; Yan, Y.; Huang, J. Curr. Opin. Colloid Interface Sci. 2021, 56, 101526.
[3]
(c) Xu, W.; Li, X.; Wang, L.; Li, S.; Chu, S.; Wang, J.; Li, Y.; Hou, J.; Luo, Q.; Liu, J. Front. Chem. 2021, 9, 635507.
[3]
(d) Zhou, W.-L.; Chen, Y.; Liu, Y. Acta Chim. Sin. 2020, 78, 1164. (in Chinese)
[3]
( 周维磊, 陈湧, 刘育, 化学学报, 2020, 78, 1164.)
[4]
(a) Yu, Y.; Rebek, R. Acc. Chem. Res. 2018, 51, 3031.
[4]
(b) Zhu, H.; Li, Q.; Khalil-Cruz, L. E.; Khashab, N. M.; Yu, G.; Huang, F. Sci. China Chem. 2021, 64, 688.
[4]
(c) Yin, H.; Wang, R. Isr. J. Chem. 2018, 58, 188.
[4]
(d) Gu, A.; Wheate, N. J. J. Inclus. Phenom. Macrocycl. Chem. 2021, 100, 55.
[4]
(e) Yang, K.; Zhang, Z.; Du, J.; Li, W.; Pei, Z. Chem. Commun. 2020, 56, 5865.
[4]
(f) Zheng, Z.; Geng, W.-C.; Xu, Z.; Guo, D.-S. Isr. J. Chem. 2019, 59, 913.
[4]
(g) Yang, X.; Chen, M.; Wang, F.; Jin, X.-Y.; Cong, H.; Tao, Z. Mini-Rev. Org. Chem. 2018, 15, 274.
[4]
(h) Sathiyajith, C.; Shaikh, R. R.; Han, Q.; Zhang, Y.; Meguellati, K.; Yang, Y.-W. Chem. Commun. 2017, 53, 677.
[4]
(i) Yin, H.; Bardelang, D.; Wang, R. Trends Chem. 2021, 3, 1.
[4]
(j) Li, Z.; Wang, H.; Zhang, D. Chem. J. Chin. Univ. 2020, 41, 1139. (in Chinese)
[4]
( 黎占亭, 王辉, 张丹维, 高等学校化学学报, 2020, 41, 1139.)
[4]
(k) Shi, Q.; Wang, X.; Liu, B.; Qiao, P.; Li, J.; Wang, L. Chem. Commun. 2021, 57, 12379.
[4]
(l) Zhang, S.; Boussouar, I.; Li, H. Chin. Chem. Lett. 2021, 32, 642.
[4]
(m) Li, S.; Gao, Y.; Ding, Y.; Xu, A.; Tan, H. Chin. Chem. Lett. 2021, 32, 313.
[4]
(n) Xiao, T.; Zhou, L.; Sun, X.-Q.; Huang, F.; Lin, C.; Wang, L. Chin. Chem. Lett. 2020, 31, 1.
[4]
(o) Li, R.-H.; Ma, J.; Sun, Y.; Li, H. Chin. Chem. Lett. 2020, 31, 3095.
[4]
(p) Duan, Z.; Xu, F.; Huang, X.; Qian, Y.; Li, H.; Tian, W. Macromol. Rapid Commun. 2021, e2100775.
[5]
(a) Hussain, A. M.; Ashraf, U. M.; Muhammad, G.; Tahir, N. M.; Bukhari, N. A. S. Curr. Pharm. Des. 2017, 23, 2377.
[5]
(b) Pan, Y. C.; X. Y. Hu, X. Y.; Guo, D.-S. Angew. Chem., Int. Ed. 2021, 60, 2768.
[5]
(c) Li, P.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2019, 30, 1190.
[5]
(d) Guo, D.-S.; Liu, Y. Acc. Chem. Res. 2014, 47, 1925.
[5]
(e) Perret, F.; Coleman, A. W. Chem. Commun. 2011, 47, 7303.
[5]
(f) Zhou, Y.; Li, H.; Yang, Y.-W. Chin. Chem. Lett. 2015, 26, 825.
[6]
(a) Macartney, D. H. Future Med. Chem. 2013, 5, 2075.
[6]
(b) Yin, H.; Zhang, X.; Wei, J.; Lu, S.; Bardelang, D.; Wang, R. Theranostics 2021, 11, 1513.
[6]
(c) Ma, D.; Hettiarachchi, G.; Nguyen, D.; Zhang, B.; Wittenberg, J. B.; Zavalij, P. Y.; Briken, V.; Isaacs, L. Nat. Chem. 2012, 4, 503.
[6]
(d) Mao, D.; Liang, Y.; Liu, Y.; Zhou, X.; Ma, J.; Jiang, B.; Liu, J.; Ma, D. Angew. Chem. Int. Ed. 2017, 56, 12614.
[6]
(e) Liu, J.; Chen, L.; Dong, G.; Yang, J.; Zhu, P.; Liao, X.; Wang, B.; Yang, B. J. Inclus. Phenom. Macrocycl. Chem. 2021, 100, 197.
[6]
(f) Deng, C.-L.; Murkli, S. L.; Isaacs, L. Chem. Soc. Rev. 2020, 49, 7516-7532.
[6]
(g) Lu, X.; Isaacs, L. Angew. Chem. Int. Ed. 2016, 55, 8076-8080.
[7]
(a) Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844.
[7]
(b) Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.; Scherman, O. A. Chem. Rev. 2015, 115, 12320.
[7]
(c) Kim, K. Selvapalam, N.; Ko, Y. H.; Park, K. M.; Kim, D.; Kim, J. Chem. Soc. Rev. 2007, 36, 267.
[7]
(d) Yao, Y. Q.; Chen, K.; Hua, Z. Y.; Zhu, Q. J.; Xue, S. F.; Tao, Z. J. Inclusion Phenom. Macrocyclic Chem. 2017, 89, 1.
[8]
(a) Yu, S.-B.; Lin, F.; Tian, T.; Yu, J.; Zhang, D.-W.; Li, Z.-T. Chem. Soc. Rev. 2022, 51, 434.
[8]
(b) Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351.
[8]
(c) Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Natl. Sci. Rev. 2017, 4, 426.
[8]
(d) Yang, B.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. J. Chem. 2020, 38, 970.
[8]
(e) Tian, J.; Zhou, T.-C.; Zhang, S.-C.; Aloni, S.; Altoe, M. V.; Xie, S.-H.; Wang, H.; Zhang, D.-W.; Zhao, X.; Liu, Y.; Li, Z.-T. Nat. Commun. 2014, 5, 5574.
[8]
(f) Wang, H.; Zhang, D.; Li, Z. Chem. J. Chin. Univ. 2020, 41, 1139. (in Chinese)
[8]
( 王辉, 张丹维, 黎占亭, 高等学校化学学报, 2020, 41, 1139.)
[9]
(a) Xu, Z.-Y.; Mao, W.; Zhao, Z.; Wang, Z.-K.; Liu, Y.-Y.; Wu, Y.; Wang, H.; Zhang, D.-W.; Li, Z.-T.; Ma, D. J. Mater. Chem. B 2022, 10, 899.
[9]
(b) Liu, Y.; Liu, C.-Z.; Wang, Z.-K.; Zhou, W.; Wang, H.; Zhang, Y.-C.; Zhang, D.-W.; Ma, D.; Li, Z.-T. Biomaterials 2022, 284, 121467.
[10]
(a) Yao, C.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhang, F.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 893.
[10]
(b) Tian, J.; Yao, C.; Yang, W.-L.; Zhang, L.; Zhang, D.-W.; Wang, H.; Zhang, F.; Liu, Y.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 798.
[10]
(c) Zhang, Y.-C.; Zeng, P.-Y.; Ma, Z.-Q.; Xu, Z.-Y.; Wang, Z.-K.; Guo, B.; Yang, F.; Li, Z.-T. Drug Delivery 2022, 29, 128.
[11]
Yang, B.; Zhang, X.-D.; Li, J.; Tian, J.; Wu, Y.-P.; Yu, F.-X.; Wang, R.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhou, L.; Li, Z.-T. CCS Chem. 2019, 1, 156.
[12]
(a) Guo, D.-S.; Jiang, B.-P.; Wang, X.; Liu, Y. Org. Biomol. Chem. 2012, 10, 720.
[12]
(b) Ma, D.; Zavalij, P. Y.; Isaacs, L. J. Org. Chem. 2010, 75, 4786.
[13]
Yu, S.-B.; Qi, Q.; Yang, B.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Small 2018, 14, 1801037.
[14]
Haino, T.; Yanase, M.; Fukunaga, C.; Fukazawa, Y. Tetrahedron 2006, 62, 2025.
[15]
(a) Sun, W.; Wang, Y.; Ma, L.; Zheng, L.; Fang, W.; Chen, X.; Jiang, H. J. Org. Chem. 2018, 83, 14667.
[15]
(b) Han, Y.; Tian, Y.; Li, Z.; Wang, F. Chem. Soc. Rev. 2018, 47, 5165.
[16]
Hardie, M. J. Supramol. Chem. 2002, 14, 7.
[17]
Lim, S.; Pang, Z.; Hweiyuin, T.; Shaikh, M.; Adinarayana, G.; Garg, S. Drug Dev. Ind. Pharm. Drug Develop. Ind. Pharm. 2015, 41, 1.
文章导航

/