研究论文

三(邻二甲胺基苄基)钇催化脂肪胺对烯腈的插入串联反应

  • 侯金松 ,
  • 杨高升
展开
  • a安徽师范大学化学与材料科学学院 有机化学研究所 安徽省分子材料重点实验室 功能分子固体教育部重点实验室 安徽芜湖 241002
    b滁州学院材料与化学工程学院 安徽滁州 239000

收稿日期: 2022-03-01

  修回日期: 2022-04-05

  网络出版日期: 2022-04-29

基金资助

国家自然科学基金(21672005); 国家自然科学基金(20972001)

Reaction of Tandem Addition of Aliphatic Amines to Alkenylnitriles Catalyzed by Tris(o-dimethylaminobenzyl)yttrium

  • Jinsong Hou ,
  • Gaosheng Yang
Expand
  • aMOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002
    bCollege of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000

Received date: 2022-03-01

  Revised date: 2022-04-05

  Online published: 2022-04-29

Supported by

National Natural Science Foundation of China(21672005); National Natural Science Foundation of China(20972001)

摘要

脒类化合物属于含氮化合物, 具有非常重要的生理活性. 利用稀土配合物催化合成环状脒类化合物的报道不多见. 以未活化的烯腈与脂肪族胺为原料, 简单的三烷基稀土金属配合物Y(CH2C6H4NMe2-o)3为预催化剂, 发生N—H键对CN与“C=C”的插入串联反应, 合成了一系列环状脒类化合物, 产率22%~96%. 该方法具有催化剂简单、反应条件温和、原子利用率百分之百的特点, 为环脒的构建提供了一种新途径.

本文引用格式

侯金松 , 杨高升 . 三(邻二甲胺基苄基)钇催化脂肪胺对烯腈的插入串联反应[J]. 有机化学, 2022 , 42(7) : 2070 -2078 . DOI: 10.6023/cjoc202203002

Abstract

Amidines are nitrogen-containing compounds with very important physiological activities. There are few reports on the synthesis of cyclic amidines catalyzed by rare earth complexes. In this paper, a series of cyclic amidines were synthesized by the tandem reaction of N—H to CN and “C=C” with simple trialkyl rare earth metal complex Y(CH2C6H4NMe2-o)3 as precatalyst with 22%~96% yields. The method has the characteristics of simple catalyst, mild reaction conditions and 100% atomic utilization. It provides a new way for the construction of cyclic amidines.

参考文献

[1]
(a) Bartsch, A.; Bross, M.; Spiteller, P.; Spiteller, M.; Steglich, W. Angew. Chem., Int. Ed. 2005, 44, 2957.
[1]
(b) Inbar, L.; Frolow, F.; Lapidot, A. Eur. J. Biochem. 1993, 214, 897.
[1]
(c) Aoyama, T.; Kojima, F.; Imada, C.; Muraoka, Y.; Naganawa, H.; Okami, Y.; Takeuchi, T.; Aoyagi, T. J. Enzyme Inhib. 1995, 8, 223.
[1]
(d) Carle, J. S.; Christophersen, C. J. Org. Chem. 1981, 46, 3440.
[1]
(e) Green, B. G.; Chabin, R.; Grant, S. K. Biochem. Biophys. Res. Commun. 1996, 225, 621.
[2]
(a) Zheng, X. X.; Liu, Y. Y.; Wan, J. P. Chin. J. Org. Chem. 2020, 40, 1891. (in Chinese)
[2]
( 郑茜茜, 刘云云, 万结平, 有机化学, 2020, 40, 1891.)
[2]
(b) Banerjee, I.; Sagar, S.; Panda, T. K. Org. Biomol. Chem. 2020, 18, 4231.
[2]
(c) Yi, F. P.; Sun, Q. H.; Sun, J.; Fu, C.; Yi, W. Y. J. Org. Chem. 2019, 84, 6780.
[2]
(d) Veeranna, K. D.; Das, K. K.; Baskaran, S. Chem. Commun. 2019, 55, 7647.
[2]
(e) Dai, Q.; Jiang, Y.; Yu, J. T.; Cheng, J. Chem. Commun. 2015, 51, 16645.
[2]
(f) Mishra, D.; Borah, A. J.; Phukan, P.; Hazarika, D.; Phukan, P. Chem. Commun. 2020, 56, 8408.
[3]
(a) Zhang, W. H.; Liu, S. F.; Maiga, R. I.; Pelletier, J.; Brown, L. E.; Wang, T. T.; Porco, J. A. J. Am. Chem. Soc. 2019, 141, 1312.
[3]
(b) Xu, Y. W.; Zhang, P.; Liu, C. Q.; Lin, C.; Lin, X. Y.; Ke, F. Chin. J. Org. Chem. 2019, 39, 538. (in Chinese)
[3]
( 许贻文, 张鹏, 刘彩琴, 林晨, 林小燕, 柯方, 有机化学, 2019, 39, 538.)
[3]
(c) Kretschmer, R. Chem.-Eur. J. 2020, 26, 2099.
[4]
(a) Molander, G. A.; Pack, S. K. J. Org. Chem. 2003, 68, 9214.
[4]
(b) Wang, J. F.; Xu, F.; Cai, T.; Shen, Q. Org. Lett. 2008, 10, 445.
[4]
(c) Spallek, T.; Anwander, R. Dalton Trans. 2016, 45, 16393.
[4]
(d) Shi, Y.; Wang, G. Q.; Wang, H.; Deng, B.; Gao, T.; Wang, J.; Guo, H. B.; Wu, M. H.; Sun, S. F. New J. Chem. 2020, 44, 14477.
[5]
(a) Zhang, F. J.; Zhang, J.; Zhang, Y.; Hong, J. Q.; Zhou, X. G. Organometallics 2014, 33, 6186.
[5]
(b) Shi, X. C.; Nishiura, M.; Hou, Z. M. J. Am. Chem. Soc. 2016, 138, 6147.
[5]
(c) Dindar, S.; Kharat, A. N. J. Coord. Chem. 2020, 73, 1954.
[6]
(a) Hong, L. C.; Shao, Y. L.; Zhang, L. X.; Zhou, X. G. Chemistry 2014, 20, 8551.
[6]
(b) Huang, S. J.; Shao, Y. L.; Zhang, L. X.; Zhou, X. G. Angew. Chem., Int. Ed. 2015, 54, 14452.
[6]
(c) Hu, K.; Liu, R. T.; Zhou, X. G. Org. Lett. 2021, 23, 6946.
[6]
(d) Ye, P. Q.; Shao, Y. L.; Xie, L. P.; Shen, K. T.; Cheng, T. X.; Chen, J. X. Chem. Asian J. 2018, 13, 3681.
[6]
(e) Hou, J. S.; Yang, G. S.; Chai, Z. J. Org. Chem. 2022, 87, 453.
[7]
(a) Sheng, E. H.; Wang, S. W.; Yang, G. S.; Zhou, S. L.; Cheng, L.; Zhang, K. H.; Huang, Z. X. Organometallics 2003, 22, 684.
[7]
(b) Zhou, S. L.; Wang, S. W.; Yang, G. S.; Liu, X. Y.; Sheng, E. H.; Zhang, K. H.; Cheng, L.; Huang, Z. X. Polyhedron 2003, 22, 1019.
[7]
(c) Xie, M. H.; Liu, X. Y.; Wang, S. W.; Liu, L.; Wu, Y. Y.; Yang, G. S.; Zhou, S. L.; Sheng, E. H.; Huang, Z. X. Chin. J. Chem. 2010, 22, 678.
[8]
(a) Bradley, D. C.; Ghotra, J. S.; Alan Hart, F. J. Chem. Soc. Dalton Trans. 1973, 1021.
[8]
(b) Ling, J.; Peng, H.; Shen, Z. Q. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 3743.
[9]
(a) Arndt, S.; Voth, P.; Spaniol, T. P.; Okuda, J. Organometallics 2000, 19, 4690.
[9]
(b) Xie, H. Y.; Wu, C. J.; Cui, D. M.; Wang, Y. J. Organomet. Chem. 2018, 875, 5.
[10]
(a) Wayda, A. L.; Atwood, J. L.; Hunter, W. E. Organometallics 1984, 3, 939.
[10]
(b) Harder, S. Organometallics 2005, 24, 373.
[11]
(a) Manzer, L. E. J. Am. Chem. Soc. 1978, 100, 8068.
[11]
(b) Zhang, W. X.; Nishiura, M.; Mashiko, T.; Hou, Z. M. Chem. Eur. J. 2008, 14, 2167.
[12]
(a) Martinez, P. H.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221.
[12]
(b) Sanjaya, S.; Chiba, S. Tetrahedron 2011, 67, 590.
[13]
Xu, H. H.; Kekeli, E. K.; Christian, W. J. Org. Chem. 2008, 73, 7638.
[14]
Hahn, B. T.; Tewes, F.; Froehlich, R.; Glorius, F. Angew. Chem., Int. Ed. 2010, 49, 1143.
文章导航

/