综述与进展

亚砜叶立德参与构建五/六元氮杂环的反应研究进展

  • 张建涛 ,
  • 张聪 ,
  • 郑梓栋 ,
  • 周鹏 ,
  • 刘卫兵
展开
  • 广东石油化工学院化学学院 广东茂名 525000

收稿日期: 2022-04-01

  修回日期: 2022-05-28

  网络出版日期: 2022-06-09

基金资助

广东石油化工学院人才引进计划(2019rc048); 国家自然科学基金(21602035)

Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles

  • Jiantao Zhang ,
  • Cong Zhang ,
  • Zidong Zheng ,
  • Peng Zhou ,
  • Weibing Liu
Expand
  • College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000
* Corresponding author. E-mail:

Received date: 2022-04-01

  Revised date: 2022-05-28

  Online published: 2022-06-09

Supported by

Projects of Talents Recruitment of Guangdong University of Petrochemical Technology(2019rc048); National Natural Science Foundation of China(21602035)

摘要

亚砜叶立德因其在有机合成中的高稳定性和多样的反应性, 被视为各种有机转化的强大试剂. 系统综述了亚砜叶立德参与构建含氮杂环化合物的反应研究进展, 总结了亚砜叶立德作为重要合成子在构建吡咯、咪唑、吲哚、喹啉、喹喔啉、噌啉等五元、六元含氮杂环化合物的新方法和新进展, 并展望了亚砜叶立德绿色合成氮杂环的未来发展趋势.

本文引用格式

张建涛 , 张聪 , 郑梓栋 , 周鹏 , 刘卫兵 . 亚砜叶立德参与构建五/六元氮杂环的反应研究进展[J]. 有机化学, 2022 , 42(9) : 2745 -2759 . DOI: 10.6023/cjoc202204002

Abstract

Sulfoxonium ylides are witnessed as powerful reagents for various organic transformations due to its high stability and diverse reactivity in organic synthesis. The research progress of sulfoxonium ylides involved in the construction of nitrogen-containing heterocyclic compounds is systematically summarized. The new methods and progress of sulfoxonium ylides as an important synthon to construct five-membered and six-membered nitrogen-containing heterocyclic compounds, such as pyrrole, imidazole, indole, quinoline, quinoxaline, and cinnoline, are summarized, and the future development trend of green synthesis of nitrogen heterocycles from sulfoxonium ylides is also prospected.

参考文献

[1]
Bhorali, P.; Sultana, S.; Gogoi, S. Asian J. Org. Chem. 2022, 11, e202100754.
[2]
Zhou, C.; Fang, F.; Cheng, Y.; Li, Y.; Liu, H.; Zhou, Y. Adv. Synth. Catal. 2018, 360, 2546.
[3]
Neuhaus, J. D.; Bauer, A.; Pinto, A.; Maulide, N. A. Angew. Chem., Int. Ed. 2018, 57, 16215.
[4]
Rahman, Md. M.; Szostak, M. Org. Lett. 2021, 23, 4818.
[5]
Mu, Y.; Chen, Y.; Gao, Y.; Sun, J.; Iqbal, Z.; Wan, Y.; Yang, M.; Yang, Z.; Tang, D. Chem. Select 2020, 5, 1705.
[6]
(a) Burtoloso, A. C. B.; Dias, R. M. P.; Leonarczyk, I. A. Eur. J. Org. Chem. 2013, 2013, 5005.
[6]
(b) Bisag, G. D.; Ruggieri, S.; Fochi, M.; and Bernardi, L. Org. Biomol. Chem. 2020, 18, 8793.
[6]
(c) Kumar, S.; Nunewar, S.; Oluguttula, S.; Nanduri, S.; Kanchupalli, V. Org. Biomol. Chem. 2021, 19, 1438.
[6]
(d) Caiuby, C. A. D.; Furniel, L. G.; Burtoloso, A, C. B. Chem. Sci. 2022, 13, 1192.
[7]
(a) Xu, Y.; Zhou, X.; Zheng, G.; Li, X. Org. Lett. 2017, 19, 5256.
[7]
(b) Ji, S.; Yan, K.; Li, B.; Wang, B. Org. Lett. 2018, 20, 5981.
[7]
(c) Kona, C. N.; Nishii, Y.; Miura, M. Org. Lett. 2020, 22, 4806.
[7]
(d) Zhang, L.; Xie, Z. Org. Lett. 2022, 24, 1318.
[8]
Leveille, A. N.; Echemendía, R.; Mattson, A. E.; Burtoloso, A. C. B. Org. Lett. 2021, 23, 9446.
[9]
Zhang, X.; Zhang, Y.; Liang, C.; Jiang, J. Org. Biomol. Chem. 2021, 19, 5767.
[10]
Li, J.; He, H.; Huang, M.; Chen, Y.; Luo, Y.; Yan, K.; Wang, Q.; Wu, Y. Org. Lett. 2019, 21, 9005.
[11]
(a) Liu, X.; Shao, Y.; Sun, J. Org. Lett. 2021, 23, 1038.
[11]
(b) Furniel, L. G.; Echemendía, R.; Burtoloso, A. C. B. Chem. Sci. 2021, 12, 7453.
[12]
(a) Chen, X.; Wang, M.; Zhang, X.; Fan, X. Org. Lett. 2019, 21, 2541.
[12]
(b) Hanchate, V.; Kumar, A.; Prabhu, K. R. Org. Lett. 2019, 21, 8424.
[13]
Wen, S.; Chen, Y.; Zhao, Z.; Ba, D.; Lv, W.; Cheng, G. J. Org. Chem. 2020, 85, 1216.
[14]
Oh, H.; Han, S.; Pandey, A. K.; Han, S. H.; Mishra, N. K.; Kim, S.; Chun, R.; Kim, H. S; Park, J. Kim, I. S. J. Org. Chem. 2018, 83, 4070.
[15]
Zhu, J.; Sun, S.; Cheng, J. Tetrahedron Lett. 2019, 59, 2284.
[16]
Hu, S.; Du, S.; Yang, Z.; Ni, L.; Chen, Z. Adv. Synth. Catal. 2019, 361, 3124.
[17]
Morinaka, B. I.; Pawlik, J. R.; Molinski, T. F. J. Org. Chem. 2010, 75, 2453.
[18]
Tian, Y.; Qin, M.; Yang, X.; Zhang, X.; Liu, Y.; Guo, X.; Chen, B. Tetrahedron 2019, 75, 2817.
[19]
Phelps, A. M.; Chan, V. S.; Napolitano, J. G.; Krabbe, S. W.; Schomaker, J. M.; Shekhar, S. J. Org. Chem. 2016, 81, 4158.
[20]
Cui, X.; and Huang, G. Org. Biomol. Chem. 2020, 18, 4014.
[21]
Guchhait, S. K.; Saini, M.; Khivsara, V. J.; Giri, S. K. J. Org. Chem. 2021, 86, 5380.
[22]
(a) Sau, P.; Santra, S. K.; Rakshit, A.; Patel, B. K. J. Org. Chem. 2017, 82, 6358.
[22]
(b) He, Y.; Feng, T.; Fan, X. Org. Lett. 2019, 21, 3918.
[23]
Tang, Z.; Zhou, Y.; Song, Q. Org. Lett. 2019, 21, 5273.
[24]
Luo, N.; Zhan, Z; Ban, Z.; Lu, G.; He, J.; Hu, F.; Huang, G. Adv. Synth. Catal. 2020, 362, 3126.
[25]
Liu, R.; Shan, Q.; Gao, Y.; Loh, T.; Hu, X. Chin. Chem. Lett. 2021, 32, 1411.
[26]
Li, X.; Zhai, P.; Fang, Y.; Li, W.; Chang, H.; Gao, W. Org. Chem. Front. 2021, 8, 988.
[27]
Chen, Y.; Lv, S.; Lai, R.; Xu, Y.; Huang, X.; Li, J.; Lv, G.; Wu, Y. Chin. Chem. Lett. 2021, 32, 2555.
[28]
Vaitla, J.; Bayer, A.; Hopmann, K. H. Angew. Chem., Int. Ed. 2018, 57, 16180.
[29]
Hu, P.; Zhang, Y.; Liu, B.; Li, X. Org. Chem. Front. 2018, 5, 3263.
[30]
Chen, M.; Meng, H.; Yang, F.; Wang, Y.; Chen, C.; Zhu, B. Org. Biomol. Chem. 2021, 19, 4268.
[31]
(a) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[31]
(b) Johnson, B. M.; Shu, Y.; Zhuo, X.; Meanwell, N. A. J. Med. Chem. 2020, 63, 6315.
[32]
Wen, S.; Tian, Q.; Chen, Y.; Zhang, Y.; Cheng, G. Org. Lett. 2021, 23, 7407.
[33]
Su, K.; Guo, X.; Zhu, L.; Liu, Y.; Lu, Y.; Chen, B. Org. Chem. Front. 2021, 8, 4177.
[34]
Kochanowska-Karamyan, A. J. Hamann, M. T. Chem. Rev. 2010, 110, 4489.
[35]
Wang, C.; Qian, P.; Chen, F.; Cheng, J. Tetrahedron Lett. 2020, 61, 152441.
[36]
Vaitla, J.; Bayer, A.; Hopmann, K. H. Angew. Chem., Int. Ed. 2017, 56, 4277.
[37]
Lv, N.; Chen, Z.; Liu, Z.; Zhang, Y. J. Org. Chem. 2019, 84, 13013.
[38]
Xie, W.; Chen, X.; Shi, J.; Li, J.; Liu, R. Org. Chem. Front. 2019, 6, 2662.
[39]
Li, H.; Lu, Y.; Jin, X.; Sun, S.; Duan, L.; Liu, J. RSC Adv. 2020, 10, 39708.
[40]
Wu, C.; Zhou, J.; He, G.; Li, H.; Yang, Q.; Wang, R.; Zhou, Y.; Liu, H. Org. Chem. Front. 2019, 6, 1183.
[41]
Lai, R.; Wu, X.; Lv, S.; Zhang, C.; He, M.; Chen, Y.; Wang, Q.; Hai, L.; Wu, Y. Chem. Commun. 2019, 55, 4039.
[42]
Wu, Y.; Pi, C.; Cui, X.; Wu, Y. Org. Lett. 2020, 22, 361.
[43]
Cui, X.; Ban, Z.; Tian, W.; Hu, F.; Zhou, X.; Ma, H.; Zhan, Z.; Huang, G. Org. Biomol. Chem. 2019, 17, 240.
[44]
Shen, Z.; Pi, C.; Cui, X.; Wu, Y. Chin. Chem. Lett. 2019, 30, 1374.
[45]
Zhang, L.; Chen, J.; Chen, J.; Jin, L.; Zheng, X.; Jiang, X.; Yu, C. Tetrahedron Lett. 2019, 60, 1053.
[46]
Luo, Y.; Guo, L.; Yu, X.; Ding, H.; Wang, H.; Wu, Y. Eur. J. Org. Chem. 2019, 2019, 3203.
[47]
Caiuby, C. A. D.; de Jesus, M. P.; Burtoloso, A. C. B. J. Org. Chem. 2020, 85, 7433.
[48]
(a) Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aïssa, C. Angew. Chem., Int. Ed. 2017, 56, 13117.
[48]
(b) Xu, Y.; Zhou, X.; Zheng, G.; Li, X. Org. Lett. 2017, 19, 5256.
[48]
(c) Xu, Y.; Yang, X.; Zhou, X.; Kong, L.; Li, X. Org. Lett. 2017, 19, 4307.
[49]
Wu, X.; Xiao, Y.; Sun, S.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6653.
[50]
(a) Li, L.; Wang, H.; Yu, S.; Yang, X.; Li, X. Org. Lett. 2016, 18, 3662.
[50]
(b) Liu, R.; Shan, Q.; Hu, X.; Loh, T. P. Chem. Commun. 2019, 55, 5519.
[50]
(c) Liu, L.; Zhang, Z.; Wang, Y.; Zhang, Y.; Li, J. Synthesis 2020, 52, 3881.
[51]
Aher, Y. N.; Pawar, A. B. Chem. Commun. 2021, 57, 7164.
[52]
Zhou, P.; Yang, W.; Li, G.; Hao, W.; Jiang, B. ChemCatChem 2020, 12, 4689.
[53]
Zheng, G.; Tian, M.; Xu, Y.; Chen, X.; Li, X. Org. Chem. Front. 2018, 5, 998.
[54]
Xie, H.; Lan, J.; Gui, J.; Chen, F.; Jiang, H.; Zeng, W. Adv. Synth. Catal. 2018, 360, 3534.
[55]
Zhou, T.; Qian, P.; Li, J.; Zhou, Y.; Li, H.; Chen, H.; Shi, B. J. Am. Chem. Soc. 2021, 143, 6810.
[56]
Yu, Y.; Xia, Z.; Wu, Q.; Liu, D.; Yu, L.; Xiao, Y.; Tan, Z.; Deng, W.; Zhu, G. Chin. Chem. Lett. 2021, 32, 1263.
[57]
(a) Zhao, D.; Wu, Q.; Huang, X.; Song, F.; Lv, T.; You, J. Chem. Eur. J. 2013, 19, 6239.
[57]
(b) Pang, X.; Zhao, L.; Zhou, D.; He, P.; An, Z.; Ni, J.; Yan, R. Org. Biomol. Chem. 2017, 15, 6318.
[58]
Prabhakar Ganesh, P. S. K.; Muthuraja, P.; Gopinath, P. Chem. Commun. 2022, 58, 4211.
[59]
Liu, C.-F.; Liu, M.; Dong, L. J. Org. Chem. 2019, 84, 409.
[60]
Hu, S.; Han, X.; Xie, X.; Fang, F.; Wang, Y.; Saidahmatov, A.; Liu, H.; Wang, J. Adv. Synth. Catal. 2021, 363, 3311.
[61]
Jin, H.; Du, Y.; Zhao, Q.; Zhao, L. Org. Chem. Front. 2021, 8, 6350.
[62]
Chen, J.; Zhong, T.; Zheng, X.; Yin, C.; Zhang, L.; Zhou, J.; Jiang, X.; Yu, C. Adv. Synth. Catal. 2021, 363, 446.
[63]
Xie, H.; Zhong, M.; Kang, H.; Shu, B.; Zhang, S. Adv. Synth. Catal. 2021, 363, 1436.
[64]
Wang, X.; Song, J.; Zhong, M.; Kang, H.; Xie, H.; Che, T.; Shu, B.; Peng, D.; Zhang, L.; Zhang, S. Eur. J. Org. Chem. 2020, 2020, 3635.
[65]
Xu, Y.; Huang, X.; Lv, G.; Lai, R.; Lv, S.; Li, J.; Hai, L.; Wu, Y. Eur. J. Org. Chem. 2020, 2020, 4635.
[66]
Cui, X.; Hu, F.; Zhou, X.; Zhan, Z.; Huang, G. Synlett 2020, 31, 1205.
[67]
Hoang, G. L.; Streit, A. D.; Ellman, J. A. J. Org. Chem. 2018, 83, 15347.
[68]
Hoang, G. L.; Ellman, J. A. Tetrahedron 2018, 74, 3318.
[69]
Chen, P.; Nan, J.; Hu, Y.; Ma, Q.; Ma, Y. Org. Lett. 2019, 21, 4812.
[70]
Liu, L.; Lin, J.; Pang, M; Jin, H.; Yu, X.; Wang, S. Org. Lett. 2022, 24, 1146.
[71]
Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.; Xia, X.; Wang, D.; Zou, L. Org. Lett. 2020, 22, 1504.
[72]
Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
[73]
Chen, G.; Chen, S.; Luo, J.; Mao, X.; Chan, A. S.; Sun, R. W.; Liu, Y. Angew. Chem., Int. Ed. 2020, 59, 614.
[74]
Gu, Z.; Liu, Y.; Wang, F.; Bao, X.; Wang, S.; Ji, S. ACS Catal. 2017, 7, 3893.
[75]
Liang, Y.; Yang, M.; He, B.; Zhao, Y. Org. Lett. 2020, 22, 7640.
[76]
Chen, G.; Zhang, X.; Jia, R.; Li, B.; Fan, X. Adv. Synth. Catal. 2018, 360, 3781.
[77]
Hong, C.; Yu, S.; Liu, Z.; Zhang, Y. RSC Adv. 2021, 11, 11490.
[78]
Shi, X.; Wang, R.; Zeng, X.; Zhang, Y.; Hu, H.; Xie, C.; Wang, M. Adv. Synth. Catal. 2018, 360, 4049.
[79]
Wu, X.; Xiong, H.; Sun, S.; Cheng, J. Org. Lett. 2018, 20, 1396.
[80]
Yang, R.; Wu, X.; Sun, S.; Yu, J.; Cheng, J. Synthesis 2018, 50, 3487.
[81]
Xu, Y.; Zheng, G.; Yang, X.; Li, X. Chem. Commun. 2018, 54, 670.
[82]
Nie, R.; Lai, R.; Lv, S.; Xu, Y.; Guo, L.; Wang, Q.; Wu, Y. Chem. Commun. 2019, 55, 11418.
[83]
Chen, Z.; Ding, Z.; Chen, T.; Meng, L.; Wang, G. Org. Biomol. Chem. 2020, 18, 8486.
[84]
(a) Li, X.; Zhao, M. J. Org. Chem. 2011, 76, 8530.
[84]
(b) Ma, W.; Graczyk, K.; Ackerma, L. Org. Lett. 2012, 14, 6318.
[85]
Jie, J.; Li, H.; Wu, S.; Chai, Q.; Wang, H.; Yang, X. RSC Adv. 2017, 7, 20548.
[86]
Zhang, J.; Wang, X.; Chen, D.; Kang, Y.; Ma, Y.; Szostak, M. J. Org. Chem. 2020, 85, 3192.
[87]
Wen, S.; Chen, Y.; Tian, Q.; Zhang, Y.; Cheng, G. J. Org. Chem. 2022, 87, 1124.
[88]
Lee, S. C.; Son, J.; Kim, J. Y.; Eom, H.; Jang, S. B.; Lee, P. H. Adv. Synth. Catal. 2021, 363, 512.
文章导航

/