研究论文

三组分一锅法合成3,4-二氢喹唑啉衍生物

  • 赵龙 ,
  • 阳茂林 ,
  • 陈皓冉 ,
  • 丁明武
展开
  • 华中师范大学 农药与化学生物学教育部重点实验室 武汉 430079

收稿日期: 2022-04-25

  修回日期: 2022-06-28

  网络出版日期: 2022-07-21

基金资助

国家自然科学基金(21572075)

One-Pot Three-Component Synthesis of 3,4-Dihydroquinazoline Derivatives

  • Long Zhao ,
  • Maolin Yang ,
  • Haoran Chen ,
  • Mingwu Ding
Expand
  • Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079

Received date: 2022-04-25

  Revised date: 2022-06-28

  Online published: 2022-07-21

Supported by

National Natural Science Foundation of China(21572075)

摘要

提出了一种通过偶氮二甲酸二乙酯(DEAD)促进的氧化Ugi/氮杂Wittig反应合成3,4-二氢喹唑啉的新方法. 该方法应用膦亚胺5N-芳基-1,2,3,4-四氢异喹啉6和羧酸7在DEAD存在下发生串联氧化型Ugi/氮杂Wittig反应, 以中等到良好的产率生成3-(四氢异喹啉-1-甲酰基)取代的3,4-二氢喹唑啉8.

本文引用格式

赵龙 , 阳茂林 , 陈皓冉 , 丁明武 . 三组分一锅法合成3,4-二氢喹唑啉衍生物[J]. 有机化学, 2022 , 42(11) : 3740 -3746 . DOI: 10.6023/cjoc202204059

Abstract

A new one-pot synthesis of 3,4-dihydroquinazolines by diethyl azodicarboxylate (DEAD)-promoted oxidative Ugi/ aza-Wittig reaction was developed. The reactions of iminophosphoranes 5, N-aryl-1,2,3,4-tetrahydroisoquinolines 6 and acids 7 produced 3-(tetrahydroisoquinolin-1-formyl) substituted 3,4-dihydroquinazolines 8 in moderate to good yields in the presence of DEAD by tandem oxidative Ugi/aza-Wittig reaction.

参考文献

[1]
Jin, K. J.; Sang, Y. L.; Han, S.; Clercq, E. D.; Pannecouque, C.; Meng, G.; Chen, F. E. Eur. J. Med. Chem. 2019, 176, 11.
[2]
Kumar, P.; Tomar, V.; Joshi, R. K.; Nemiwal, M. Synth. Commun. 2022, 52, 795.
[3]
Lee, Y. S.; Lee, B. H.; Park, S. J.; Kang, S. B.; Rhim, H.; Park, J. Y.; Lee, J. H.; Jeong, S. W.; Lee, J. Y. Bioorg. Med. Chem. Lett. 2004, 14, 3379.
[4]
Patterson, S.; Alphey, M. S.; Jones, D. C.; Shanks, E. J.; Street, I. P.; Frearson, J. A.; Wyatt, P. G.; Gilbert, I. H.; Fairlamb, A. H. J. Med. Chem. 2011, 54, 6514.
[5]
Goldner, T.; Hewlett, G.; Ettischer, N.; Ruebsamen-Schaeff, H.; Zimmermann, H.; Lischka, P. J. Virol. 2011, 85, 10884.
[6]
Li, W. J.; Li, Q.; Liu, D. L.; Ding, M. W. J. Agric. Food. Chem. 2013, 61, 1419.
[7]
Nepali, K.; Sharma, S.; Ojha, R.; Dhar, K. L. Med. Chem. Res. 2013, 22, 1.
[8]
Liu, W.; Wang, Y. L.; He, D. D.; Li, S. P.; Zhu, Y. D.; Jiang, B.; Cheng, X. M.; Wang, Z. T.; Wang, C. H. Phytomedicine 2015, 22, 1088.
[9]
Gruber, N.; Diaz, J. E.; Orelli, L. R. Beilstein J. Org. Chem. 2018, 14, 2510.
[10]
Ren, J.; Pi, C.; Wu, Y. J.; Cui, X. L. Org. Lett. 2019, 21, 4067.
[11]
Meng, X. H.; Yang, M.; Peng, J. Y.; Zhao, Y. L. Adv. Synth. Catal. 2020, 363, 244.
[12]
Campbell, M. V.; Iretskii, A. V.; Mosey, R. A. J. Org. Chem. 2020, 85, 11211.
[13]
Zhang, X. Y.; Luo, C. J.; Chen, X. Y.; Ma, W. L.; Li, B.; Lin, Z. R.; Chen, X. W.; Li, Y. B.; Xie, F. Tetrahedron Lett. 2021, 66, 152835.
[14]
Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G. C.; Zhu, J. P. Chem. Soc. Rev. 2017, 46, 1295.
[15]
Amador-Sánchez, Y. A.; Hernández-Vázquez, E.; González-Mojica, N.; Ramírez-Apan, M. T.; Miranda, L. D. Tetrahedron 2020, 76, 131383.
[16]
Song, K. X.; Qin, X. Y.; Ma, Z. X.; Geng, F. Z.; Hao, W. J.; Tu, S. J.; Jiang, B. Org. Chem. Front. 2021, 8, 5681.
[17]
Ren, Z. L.; Lu, W. T.; Cai, S.; Xiao, M. M.; Yuan, Y. F.; Ping, H.; Ding, M. W. J. Org. Chem. 2019, 84, 14911.
[18]
Wang, J. K.; Sun, Y. L.; Wang, G. J.; Zhen, L. Eur. J. Org. Chem. 2017, 2017, 6338.
[19]
Sun, M.; Zhao, L.; Ding, M. W. J. Org. Chem. 2019, 84, 14313.
[20]
Sun, M.; Zhao, L.; Yu, Y. L.; Ding, M. W. Synthesis 2020, 53, 1365.
[21]
Sun, M.; Yu, Y. L.; Zhao, L.; Ding, M. W. Tetrahedron 2021, 96, 132368.
[22]
Zhao, L.; Yang, M. L.; Sun, M.; Ding, M. W. Synlett 2022, 33, 66.
[23]
Hahn, F. E.; Langenhahn, V.; Meier, N.; Lügger, T.; Fehlhammer, W. P. Chem. Eur. J. 2003, 9, 704.
[24]
Xiong, J.; Wei, X.; Yan, Y. M.; Ding, M. W. Tetrahedron 2017, 73, 5720.
文章导航

/