研究论文

3-硝基-1,2,4-三唑-5-酮(NTO)热分解机理的对称破缺密度泛函理论研究

  • 凌琳 ,
  • 王健 ,
  • 李婧 ,
  • 李玉学 ,
  • 吕龙
展开
  • a 中国科学院上海有机化学研究所 院能量调控材料重点实验室 上海 200032
    b 北京系统工程研究所 北京 100034
    c 中国兵器科学研究院 北京 100089

收稿日期: 2022-06-17

  修回日期: 2022-07-20

  网络出版日期: 2022-08-18

基金资助

国家自然科学基金(22175197)

Broken-Symmetry Density Functional Theory Study on Pyrolysis Mechanisms of 3-Nitro-1,2,4-triazol-5-one (NTO)

  • Lin Ling ,
  • Jian Wang ,
  • Jing Li ,
  • Yuxue Li ,
  • Long Lu
Expand
  • a CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    b Beijing System Engineering Institute, Beijing 100034
    c Ordnance Science Institute of China, Beijing 100089
* Corresponding authors. E-mail: ;

Received date: 2022-06-17

  Revised date: 2022-07-20

  Online published: 2022-08-18

Supported by

National Natural Science Foundation of China(22175197)

摘要

共价键均裂在含能分子的热分解过程中普遍存在, 因此极为重要. 然而, 以往的理论研究通常用键能(ΔH, BDE)估算均裂能垒, 因忽略了熵效应, 必然造成较大误差. 采用对称破缺密度泛函方法(BS-UB3LYP/6-311+G**), 对含能分子3-硝基-1,2,4-三唑-5-酮(NTO)的热分解机理进行了系统研究和梳理, 计算了共价键均裂的过渡态及能垒. 结果表明, C—NO2键均裂和随后的自由基复合是最优途径, 能垒为216.9 kJ•mol–1 (523 K). 随后产生的NO自由基通过多次“复合-均裂”过程促进三唑中间体开环, 分解为HNCO, N2O和CO等小分子, 它们相互反应又生成NO2, N2和CO2. 这些分解产物与诸多实验观测结果一致.

本文引用格式

凌琳 , 王健 , 李婧 , 李玉学 , 吕龙 . 3-硝基-1,2,4-三唑-5-酮(NTO)热分解机理的对称破缺密度泛函理论研究[J]. 有机化学, 2023 , 43(1) : 285 -294 . DOI: 10.6023/cjoc202206027

Abstract

Homolytic cleavage of covalent bonds is very common during the pyrolysis of energetic molecules. However, instead of locating the transition state and calculating the free energy barrier ΔG, the bond dissociation energy (ΔH, BDE) is usually considered as the “energy barrier” of the homo-cleavage processes. This simplification brings large errors. In the present work, several pyrolysis pathways of 3-nitro-1,2,4-triazol-5-one (NTO) were studied using broken-symmetry density functional theory method (BS-UB3LYP/6-311+G**). Each transition state of homolytic cleavage was located. The results show that the best pyrolysis pathway under the experimental conditions proceeds via the homolytic cleavage of the C—NO2 bond and the subsequent radical recombination, the energy barrier of the rate-determining step is 216.9 kJ•mol–1 (523 K). Then, NO can promote the subsequent ring-opening, and finally yielding HNCO, N2O and CO. Further reactions between these small molecules lead to NO2, N2 and CO2. These products are consistent well with the experimental observations.

参考文献

[1]
Viswanath, D. S.; Ghosh, T. K.; Boddu, V. M. Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Springer, Dordrecht, 2018, pp. 163-211.
[2]
Lee, K.; Chapman, L. B.; Cobura, M. D. J. Energ. Mater. 1987, 5, 27.
[3]
Ma, H.-X.; Song, J.-R.; Hu, R.-Z. Chin. J. Expl. Propell. 2006, 29, 9. (in Chinese)
[3]
(马海霞, 宋纪蓉, 胡荣祖, 火炸药学报, 2006, 29, 9.)
[4]
Rothgery, E. F.; Audette, D. E.; Wedlich, R. C.; Csejka, D. A. Thermochim. Acta 1991, 185, 235.
[5]
Menapace, J. A.; Marlin, J. E.; Bruss, D. R.; Dascher, R. V. J. Phys. Chem. 1991, 95, 5509.
[6]
?stmark, H.; Bergman, H.; ?qvist, G. Thermochim. Acta 1993, 213, 165.
[7]
Prabhakaran, K. V.; Naidu, S. R.; Kurian, E. M. Thermochim. Acta 1994, 241, 199.
[8]
Brill, T. B.; Gongwer, P. E.; Williams, G. K. J. Phys. Chem. 1994, 98, 12242.
[9]
Hara, Y.; Taniguchi, H.; Ikeda, Y.; Takayama, S.; Nakamura, H. Kayaku Gakkaishi 1994, 55, 183.
[10]
Williams, G. K.; Palopoli, S. F.; Brill, T. B. Combust. Flame 1994, 98, 197.
[11]
Oxley, J. C.; Smith, J. L.; Zhou, Z.; McKenney, R. L. J. Phys. Chem. 1995, 99, 10383.
[12]
Williams, G. K.; Brill, T. B. J. Phys. Chem. 1995, 99, 12536.
[12]
Botcher, T. R.; Beardall, D. J.; Wight, C. A. J. Phys. Chem. 1996, 100, 8802.
[13]
Mcmillen, D. F.; Erlich, D. C.; He, C.; Becker, C. H.; Shockey, D. A. Combust. Flame 1997, 111, 133.
[14]
Long, G. T.; Brems, B. A.; Wight, C. A. J. Phys. Chem. B 2002, 106, 4022.
[15]
Kondrikov, B. N.; Smirnov, S. P.; Minakin, A. V. Propellants, Explos., Pyrotechnics 2004, 29, 27.
[16]
Sinditskii, V. P.; Smirnov, S. P.; Egorshev, V. Y. Propellants, Explos., Pyrotechnics 2007, 32, 277.
[17]
Oxley, J. C.; Smith, J. L.; Rogers, E.; Dong, X. X. J. Phys. Chem. A 1997, 101, 3531.
[18]
Wang, K.; Wang, J.-L.; Xu, D.; Guo, T.-J.; Wang, W.; Tu, J. Acta Armamentarii 2018, 39, 1727. (in Chinese)
[18]
(王凯, 王俊林, 徐东, 郭天吉, 王伟, 涂建, 兵工学报, 2018, 39, 1727.)
[19]
Harris, N. J.; Lammertsma, K. J. Am. Chem. Soc. 1996, 118, 8048.
[20]
Meredith, C.; Russell, T. P.; Mowrey, R. C.; McDonald, J. R. J. Phys. Chem. A 1998, 102, 471.
[21]
Wang, Y.-M.; Chen, C.; Lin, S.-T. J. Mol. Struct.: Theochem. 1999, 460, 79.
[22]
Yim, W.-L.; Liu, Z.-F. J. Am. Chem. Soc. 2001, 123, 2243.
[23]
Kohno, Y.; Takahashi, O.; Saito, K. Phys. Chem. Chem. Phys. 2001, 3, 2742.
[24]
Xiao, H.-M.; Ju, X.-H.; Xu, L.-N.; Fang, J.-Y. J. Chem. Phys. 2004, 121, 12523.
[25]
Türker, L.; Atalar, T. J. Hazard. Mater. 2006, A137, 1333.
[26]
Xu, L.; Fang, G.; Li, X.; Yuan, J.; Hu, X.; Zhu, W.; Xiao, H.; Ji, G. J. Mol. Graphics Modell. 2007, 26, 415.
[27]
Hiyoshi, R. I.; Kohno, Y.; Nakamura, J. J. Phys. Chem. A 2004, 108, 5915.
[28]
Hiyoshi, R. I.; Kohno, Y.; Takahashi, O.; Nakamura, J.; Yamaguchi, Y.; Matsumoto, S.; Azuma, N.; Ueda, K. J. Phys. Chem. A 2006, 110, 9816.
[29]
Keshavarz, M. H.; Zohari, N.; Seyedsadjadi, S. A. J. Therm. Anal. Calorim. 2013, 114, 497.
[30]
Liu, Z.; Wu, Q.; Zhu, W.; Xiao, H. Phys. Chem. Chem. Phys. 2015, 17, 10568.
[31]
Moxnes, J. F.; Fr?yland, ?.; Risdal, T. J. Mol. Model. 2017, 23, 240.
[32]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, ?.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2013.
[33]
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[34]
Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Ed.: Mineola, N. Y., Dover, 1996, pp. 221-229.
[35]
Grafenstein, J.; Hjerpe, A. M.; Kraka, E. J. Phys. Chem. A 2000, 104, 1748.
[36]
Yao, Z.; Yu, Z. J. Am. Chem. Soc. 2011, 133, 10864.
[37]
Ling, L.; Liu, K.; Li, X.; Li, Y. ACS Catal. 2015, 5, 2458.
文章导航

/