综述与进展

二酮的不对称催化还原反应研究进展

  • 张宇轩 ,
  • 许立民 ,
  • 卢岩 ,
  • 张兆国
展开
  • 上海交通大学化学化工学院 上海 200240

收稿日期: 2022-07-30

  修回日期: 2022-08-20

  网络出版日期: 2022-09-02

基金资助

国家自然科学基金(22071151)

Progress in Asymmetric Catalytic Reduction of Diketones

  • Yuxuan Zhang ,
  • Limin Xu ,
  • Yan Lu ,
  • Zhaoguo Zhang
Expand
  • School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240
* Corresponding authors. E-mail: ;

Received date: 2022-07-30

  Revised date: 2022-08-20

  Online published: 2022-09-02

Supported by

National Natural Science Foundation of China(22071151)

摘要

手性二醇类化合物是一类重要的手性结构单元和手性中间体, 过渡金属催化的二酮类化合物的不对称氢化和氢转移反应是获得手性二醇最为直接高效的方法之一. 同时, 手性羟基酮作为二酮的不对称单还原产物, 也广泛应用于手性片段的构建, 其中环状二酮的去对称化甚至可一步构建多个手性中心. 从不同底物类型(1,2-/1,3-/1,4-)的二酮角度出发, 综述了近几十年来二酮类化合物的不对称氢化和氢转移反应研究进展, 着重讨论底物与催化剂配位模式对反应选择性的影响, 并对该领域未来的挑战和发展方向进行了展望.

本文引用格式

张宇轩 , 许立民 , 卢岩 , 张兆国 . 二酮的不对称催化还原反应研究进展[J]. 有机化学, 2022 , 42(10) : 3221 -3239 . DOI: 10.6023/cjoc202207045

Abstract

Chiral diols are an integral part of chiral building blocks and synthetic intermediates. Transition metal-catalyzed asymmetric hydrogenation and transfer hydrogenation of diketones are recognized as one of the most straightforward and efficient methods for the preparation of enantiomerically enriched diols. Meanwhile, the mono-reduction product of diketones, chiral hydroxyketones, has wide application in chiral fragment construction as well, among which, desymmetrization of cyclic diketones possesses the capability of establishing multiple chiral centers in one step. In this paper, research progress of asymmetric hydrogenation and transfer hydrogenation of diketone compounds in recent decades is reviewed from the perspective of different substrate types (1,2-/1,3-/1,4-diketones), with emphasis on the influence of coordination mode between substrate and catalyst species on the stereoselectivity. In addition, future challenges and development tendencies in this field are summarized and prospected.

参考文献

[1]
Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40.
[2]
(a) de Vries, J. G.; Elsevier, C. J. Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim, Germany, 2007.
[2]
(b) Ma, Y.; Zhang, Y. J.; Zhang, W. Chin. J. Org. Chem. 2007, 27, 289. (in Chinese).
[2]
(马元辉, 张勇健, 张万斌, 有机化学, 2007, 27, 289.)
[2]
(c) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis on Industrial Scale, 2nd ed., Wiley-VCH, Weinheim, Germany, 2010.
[2]
(d) Xie, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2012, 70, 1427. (in Chinese).
[2]
(谢建华, 周其林, 化学学报, 2012, 70, 1427.)
[2]
(e) Etayo, P.; Vidal-Ferran, A. Chem. Soc. Rev. 2013, 42, 728.
[2]
(f) Wang, Y.; Zhang, Z.; Zhang, W. Chin. J. Org. Chem. 2015, 35, 528. (in Chinese).
[2]
(王英杰, 张振锋, 张万斌, 有机化学, 2015, 35, 528.)
[2]
(g) Wang, Z.; Zhang, Z.; Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 447. (in Chinese).
[2]
(王志惠, 张振锋, 刘燕刚, 张万斌, 有机化学, 2016, 36, 447.)
[3]
Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856.
[4]
(a) Sheldon, R. A. Recl. Trav. Chim. Pays-Bas 1996, 115, 155.
[4]
(b) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
[5]
Rossen, K. Angew. Chem., Int. Ed. 2001, 40, 4611.
[6]
(a) Noyori, R.; Koizumi, M.; Ishii, D.; Ohkuma, T. Pure Appl. Chem. 2001, 73, 227.
[6]
(b) Dub, P. A.; Gordon, J. C. Dalton Trans. 2016, 45, 6756.
[6]
(c) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya, T.; Noyori, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 285.
[7]
(a) Wu, X.; Xiao, J. Chem. Commun. 2007, 2449.
[7]
(b) Ohkuma, T. Proc. Jpn. Acad., Ser. B. 2010, 86, 202.
[7]
(c) Štefane, B.; Požgan, F. Catal. Rev. 2014, 56, 82.
[7]
(d) Yoshimura, M.; Tanaka, S.; Kitamura, M. Tetrahedron Lett. 2014, 55, 3635.
[7]
(e) Li, Y.-Y.; Yu, S.-L.; Shen, W.-Y.; Gao, J.-X. Acc. Chem. Res. 2015, 48, 2587.
[7]
(f) Xie, J.-H.; Bao, D.-H.; Zhou, Q.-L. Synthesis 2015, 47, 460.
[7]
(g) Li, X.; Zhang, P.; Duan, K.; Wang, J. Chin. J. Org. Chem. 2012, 32, 19. (in Chinese).
[7]
(李小娜, 张鹏亮, 段凯, 王家喜, 有机化学, 2012, 32, 19.)
[8]
Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 629.
[9]
Fan, Q.; Yeung, C.; Chan, A. S. C. Tetrahedron: Asymmetry 1997, 8, 4041.
[10]
Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2007, 129, 5816.
[11]
Huang, X.; Li, N.; Geng, Z.; Pan, F.; Wang, X. Chin. J. Chem. 2012, 30, 2657.
[12]
Swamy, P. C. A.; Varenikov, A.; de Ruiter, G. Chem. Eur. J. 2020, 26, 2333.
[13]
Murata, K.; Okano, K.; Miyagi, M.; Iwane, H.; Noyori, R.; Ikariya, T. Org. Lett. 1999, 1, 1119.
[14]
Koike, T.; Murata, K.; Ikariya, T. Org. Lett. 2000, 2, 3833.
[15]
Wu, X.; Li, X.; Zanotti-Gerosa, A.; Pettman, A.; Liu, J.; Mills, A. J.; Xiao, J. Chem. Eur. J. 2008, 14, 2209.
[16]
Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960.
[17]
Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.
[18]
Zhang, H.; Feng, D.; Sheng, H.; Ma, X.; Wan, J.; Tang, Q. RSC Adv. 2014, 4, 6417.
[19]
Kišić, A.; Stephan, M.; Mohar, B. Adv. Synth. Catal. 2014, 356, 3193.
[20]
Kišić, A.; Stephan, M.; Mohar, B. Adv. Synth. Catal. 2015, 357, 2540.
[21]
De Luca, L.; Mezzetti, A. Angew. Chem., Int. Ed. 2017, 56, 11949.
[22]
Luca, L. D.; Mezzetti, A. J. Org. Chem. 2020, 85, 5807.
[23]
Murayama, H.; Heike, Y.; Higashida, K.; Shimizu, Y.; Yodsin, N.; Wongnongwa, Y.; Jungsuttiwong, S.; Mori, S.; Sawamura, M. Adv. Synth. Catal. 2020, 362, 4655.
[24]
Kawano, H.; Ishii, Y.; Saburi, M.; Uchida, Y. J. Chem. Soc., Chem. Commun. 1988, 87.
[25]
Shao, L.; Seki, T.; Kawano, H.; Saburi, M. Tetrahedron Lett. 1991, 32, 7699.
[26]
Kiegiel, J.; Jóźwik, J.; Woźniak, K.; Jurczak, J. Tetrahedron Lett. 2000, 41, 4959.
[27]
Hu, A.; Lin, W. Org. Lett. 2005, 7, 455.
[28]
(a) Rychnovsky, S. D.; Griesgraber, G.; Zeller, S.; Skalitzky, D. J. J. Org. Chem. 1991, 56, 5161.
[28]
(b) Rychnovsky, S. D. Org. Synth. 2000, 77, 1.
[29]
(a) Zhou, S.-Z.; Anné, S.; Vandewalle, M. Tetrahedron Lett. 1996, 37, 7637.
[29]
(b) Jung, M. E.; Kretschik, O. J. Org. Chem. 1998, 63, 2975.
[29]
(c) Werness, J. B.; Tang, W. Org. Lett. 2011, 13, 3664.
[29]
(d) Walleser, P.; Bruckner, R. Org. Lett. 2013, 15, 1294.
[29]
(e) Singh, G.; Meyer, A.; Aube, J. J. Org. Chem. 2014, 79, 452.
[30]
(a) Bianchini, C.; Barbaro, P.; Scapacci, G.; Zanobini, F. Organometallics 2000, 19, 2450.
[30]
(b) Dubrovina, N. V.; Tararov, V. I.; Monsees, A.; Kadyrov, R.; Fischer, C.; Borner, A. Tetrahedron: Asymmetry 2003, 14, 2739.
[30]
(c) Brunner, H.; Terfort, A. Tetrahedron: Asymmetry 1995, 6, 919.
[31]
(a) Poss, C. S.; Rychnovsky, S. D.; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 3360.
[31]
(b) Wovkulich, P. M.; Shankaran, K.; Kiegiel, J.; Uskokovic, M. R. J. Org. Chem. 1993, 58, 832.
[31]
(c) Schulz, S. Chem. Commun. 1999, 1239.
[31]
(d) Juszkiewicz, G.; Jurczak, J. Org. Prep. Proced. Int. 2002, 34, 187.
[31]
(e) Arsene, C.; Schulz, S. Org. Lett. 2002, 4, 2869.
[31]
(f) Stritzke, K.; Schulz, S.; Nishida, R. Eur. J. Org. Chem. 2002, 2002, 3884.
[31]
(g) Wender, P. A.; Mayweg, A. V.; VanDeusen, C. L. Org. Lett. 2003, 5, 277.
[31]
(h) Polkowska, J.; Lukaszewicz, E.; Kiegiel, J.; Jurczak, J. Tetrahedron Lett. 2004, 45, 3873.
[32]
(a) Balog, A.; Harris, C.; Savin, K.; Zhang, X.-G.; Chou, T.-C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 1998, 37, 2675.
[32]
(b) Harris, C. R.; Kuduk, S. D.; Balog, A.; Savin, K.; Glunz, P. W.; Danishefsky, S. J. J. Am. Chem. Soc. 1999, 121, 7050.
[32]
(c) Glunz, P. W.; He, L.; Horwitz, S. B.; Chakravarty, S.; Ojima, I.; Chou, T.-C.; Danishefsky, S. J. Tetrahedron Lett. 1999, 40, 6895.
[32]
(d) Stachel, S. J.; Chappell, M. D.; Lee, C. B.; Danishefsky, S. J.; Chou, T.-C.; He, L.; Horwitz, S. B. Org. Lett. 2000, 2, 1637.
[32]
(e) Lee, C. B.; Chou, T.-C.; Zhang, X.-G.; Wang, Z.-G.; Kuduk, S. D.; Chappell, M. D.; Stachel, S. J.; Danishefsky, S. J. J. Org. Chem. 2000, 65, 6525.
[32]
(f) Haydl, A. M.; Breit, B. Chem. Eur. J. 2017, 23, 541.
[33]
Mezzetti, A.; Consiglio, G. J. Chem. Soc., Chem. Commun. 1991, 1675.
[34]
Mezzetti, A.; Tschumper, A.; Consiglio, G. J. Chem. Soc., Dalton Trans. 1995, 49.
[35]
Pini, D.; Mandoli, A.; Iuliano, A.; Salvadori, P. Tetrahedron: Asymmetry 1995, 6, 1031.
[36]
Blanc, D.; Ratovelomanana-Vidal, V.; Marinetti, A.; Genêt, J.-P. Synlett 1999, 1999, 480.
[37]
Michaud, G.; Bulliard, M.; Ricard, L.; Genêt, J. P.; Marinetti, A. Chem. Eur. J. 2002, 8, 3327.
[38]
(a) Duprat de Paule, S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Deschaux, G.; Dellis, P. Org. Process Res. Dev. 2003, 7, 399.
[38]
(b) Duprat de Paule, S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Eur. J. Org. Chem. 2003, 1931.
[39]
Genêt, J.-P.; Ratovelomanana-Vidal, V.; Jeulin, S.; Champion, N.; Dellis, P. Synthesis 2005, 3666.
[40]
Clarke, M. L.; France, M. B.; Knight, F. R.; Frew, J. J. R.; Roff, G. J. Synlett 2007, 1739.
[41]
Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-Vidal, V.; Genêt, J. P.; Champion, N.; Dellis, P. Angew. Chem., Int. Ed. 2004, 43, 320.
[42]
Kesselgruber, M.; Lotz, M.; Martin, P.; Melone, G.; Muller, M.; Pugin, B.; Naud, F.; Spindler, F.; Thommen, M.; Zbinden, P.; et al. Chem Asian J 2008, 3, 1384.
[43]
Li, W.; Fan, W.; Ma, X.; Tao, X.; Li, X.; Xie, X.; Zhang, Z. Chem. Commun. 2012, 48, 8976.
[44]
Li, W.; Lu, B.; Xie, X.; Zhang, Z. Org. Lett. 2019, 21, 5509.
[45]
Yamamura, T.; Nakatsuka, H.; Tanaka, S.; Kitamura, M. Angew. Chem., Int. Ed. 2013, 52, 9313.
[46]
Yu, C.-B.; Wang, H.-D.; Song, B.; Shen, H.-Q.; Fan, H.-J.; Zhou, Y.-G. Sci. China Chem. 2020, 63, 215.
[47]
(a) Ireland, T.; Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P. Angew. Chem., Int. Ed. 1999, 38, 3212.
[47]
(b) Ireland, T.; Tappe, K.; Grossheimann, G.; Knochel, P. Chem. Eur. J. 2002, 8, 843.
[47]
(c) Lotz, M.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed. 2002, 41, 4708.
[47]
(d) Tappe, K.; Knochel, P. Tetrahedron: Asymmetry 2004, 15, 91.
[48]
Spindler, F.; Malan, C.; Lotz, M.; Kesselgruber, M.; Pittelkow, U.; Rivas-Nass, A.; Briel, O.; Blaser, H. U. Tetrahedron: Asymmetry 2004, 15, 2299.
[49]
(a) Sturm, T.; Weissensteiner, W.; Spindler, F. Adv. Synth. Catal. 2003, 345, 160.
[49]
(b) Wang, Y.; Sturm, T.; Steurer, M.; Arion, V. B.; Mereiter, K.; Spindler, F.; Weissensteiner, W. Organometallics 2008, 27, 1119.
[50]
(a) Zirakzadeh, A.; Gross, M. A.; Wang, Y.; Mereiter, K.; Spindler, F.; Weissensteiner, W. Organometallics 2013, 32, 1075.
[50]
(b) Zirakzadeh, A.; Gross, M. A.; Wang, Y.; Mereiter, K.; Weissensteiner, W. Organometallics 2014, 33, 1945.
[51]
(a) Fukuzawa, S.; Oki, H.; Hosaka, M.; Sugasawa, J.; Kikuchi, S. Org. Lett. 2007, 9, 5557.
[51]
(b) Oki, H.; Oura, I.; Nakamura, T.; Ogata, K.; Fukuzawa, S. Tetrahedron: Asymmetry 2009, 20, 2185.
[52]
Espino, G.; Xiao, L.; Puchberger, M.; Mereiter, K.; Spindler, F.; Manzano, B. R.; Jalon, F. A.; Weissensteiner, W. Dalton Trans. 2009, 2751.
[53]
Gong, Q.; Wen, J.; Zhang, X. Chem. Sci. 2019, 10, 6350.
[54]
Morken, J. P.; Russell, A. E; Taylor, S. J. In Encyclopedia of Reagents for Organic Synthesis, Eds.: John, W.; Sons, L., John Wiley & Sons, Ltd., New York, 2018, p. 1.
[55]
Blandin, V.; Carpentier, J.-F.; Mortreux, A. New J. Chem. 2000, 24, 309.
[56]
Marinetti, A.; Jus, S.; Genêt, J. P.; Ricard, L. J. Organomet. Chem. 2001, 624, 162.
[57]
Imamoto, T.; Nishimura, M.; Koide, A.; Yoshida, K. J. Org. Chem. 2007, 72, 7413.
[58]
(a) Xie, J. H.; Liu, X. Y.; Yang, X. H.; Xie, J. B.; Wang, L. X.; Zhou, Q. L. Angew. Chem., Int. Ed. 2012, 51, 201.
[58]
(b) Yang, X. H.; Xie, J. H.; Zhou, Q. L. Org. Chem. Front. 2014, 1, 190.
[59]
Chen, Y.-C.; Deng, J.-G.; Wu, T.-F.; Cui, X.; Jiang, Y.-Z.; Choi, M. C. K.; Chan, A. S. C. Chin. J. Chem. 2001, 19, 807.
[60]
Cossy, J.; Eustache, F.; Dalko, P. I. Tetrahedron Lett. 2001, 42, 5005.
[61]
Eustache, F.; Dalko, P. I.; Cossy, J. Org. Lett. 2002, 4, 1263.
[62]
Eustache, F.; Dalko, P. I.; Cossy, J. J. Org. Chem. 2003, 68, 9994.
[63]
Watanabe, M.; Murata, K.; Ikariya, T. J. Org. Chem. 2002, 67, 1712.
[64]
Chen, Y. C.; Wu, T. F.; Deng, J. G.; Liu, H.; Cui, X.; Zhu, J.; Jiang, Y. Z.; Choi, M. C.; Chan, A. S. J. Org. Chem. 2002, 67, 5301.
[65]
Soni, R.; Collinson, J. M.; Clarkson, G. C.; Wills, M. Org. Lett. 2011, 13, 4304.
[66]
Kuang, L.; Liu, L. L.; Chiu, P. Chem. Eur. J. 2015, 21, 14287.
[67]
Cotman, A. E.; Cahard, D.; Mohar, B. Angew. Chem., Int. Ed. 2016, 55, 5294.
[68]
Yu, C.-B.; Song, B.; Chen, M.-W.; Shen, H.-Q.; Zhou, Y.-G. Org. Lett. 2019, 21, 9401.
[69]
Ding, Y.-X.; Zhu, Z.-H.; Wang, H.; Yu, C.-B.; Zhou, Y.-G. Sci. China Chem. 2021, 64, 232.
[70]
Wang, J.; Shao, P.-L.; Lin, X.; Ma, B.; Wen, J.; Zhang, X. Angew. Chem., Int. Ed. 2020, 59, 18166.
[71]
Clay, D. R.; Rosenberg, A. G.; McIntosh, M. C. Tetrahedron: Asymmetry 2011, 22, 713.
[72]
Fang, Z.; Wills, M. J. Org. Chem. 2013, 78, 8594.
[73]
Echeverria, P.-G.; Férard, C.; Phansavath, P.; Ratovelomanana-Vidal, V. Catal. Commun. 2015, 62, 95.
[74]
Zheng, L.-S.; Llopis, Q.; Echeverria, P.-G.; Férard, C.; Guillamot, G.; Phansavath, P.; Ratovelomanana-Vidal, V. J. Org. Chem. 2017, 82, 5607.
[75]
Hong, Y.; Chen, J.; Zhang, Z.; Liu, Y.; Zhang, W. Org. Lett. 2016, 18, 2640.
[76]
Zhang, F.-H.; Zhang, F.-J.; Li, M.-L.; Xie, J.-H.; Zhou, Q.-L. Nat. Catal. 2020, 3, 621.
文章导航

/