综述与进展

芳炔参与的三组分芳基化反应进展

  • 陈东平 ,
  • 杨春红 ,
  • 李明 ,
  • 赵国孝 ,
  • 王文鹏 ,
  • 王喜存 ,
  • 权正军
展开
  • 西北师范大学化学化工学院 兰州 730070
†共同第一作者

收稿日期: 2022-06-06

  修回日期: 2022-08-30

  网络出版日期: 2022-10-27

基金资助

国家自然科学基金(22061038); 国家自然科学基金(22067018); 甘肃省自然科学基金(20YF3GA023); 甘肃省自然科学基金(20JR5RA210)

Recent Progress on Arylation with Aryne through Three-Component Reaction

  • Dongping Chen ,
  • Chunhong Yang ,
  • Ming Li ,
  • Guoxiao Zhao ,
  • Wenpeng Wang ,
  • Xicun Wang ,
  • Zhengjun Quan
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070
†(These authors contributed equally to this work).
* Corresponding authors. E-mail: ;

Received date: 2022-06-06

  Revised date: 2022-08-30

  Online published: 2022-10-27

Supported by

National Natural Science Foundation of China(22061038); National Natural Science Foundation of China(22067018); Natural Science Foundation of Gansu Province(20YF3GA023); Natural Science Foundation of Gansu Province(20JR5RA210)

摘要

三组分反应具有操作简单、反应效率高等优势, 契合“原子经济、绿色环保”等原则. 目前, 芳炔参与的无过渡金属催化的芳基化反应主要分为以下三种类型: (1)直接芳基化反应; (2)基于σ-键或π-键的芳炔插入反应; (3)芳炔参与的三组分反应. 相比于发展较为成熟的直接芳基化反应和基于σ-键或π-键的芳炔插入反应, 芳炔参与的三组分反应机理尚不清楚, 相关的综述也较为少见. 为了科研工作者方便查阅、了解芳炔参与的三组分反应, 对近年来芳炔参与的芳基化三组分反应研究进展进行综述.

本文引用格式

陈东平 , 杨春红 , 李明 , 赵国孝 , 王文鹏 , 王喜存 , 权正军 . 芳炔参与的三组分芳基化反应进展[J]. 有机化学, 2023 , 43(2) : 503 -525 . DOI: 10.6023/cjoc202206006

Abstract

The three component reaction has the advantages of simple operation and efficient reaction, in line with the principles of atomic economy and green environmental protection. At present, the arylation without transition metal catalyst is mainly divided into three types of as following: (1) the direct arylation, (2) the insertion of aryne into σ-bond or π-bond, and (3) the three-component reactions involving aryne. Compared with the direct arylation and the insertion of aryne into σ-bond or π-bond, the mechanism of three component reactions involving aryne is still unclear, and the published reviews are still lacking. In order to facilitate the scientific researchers to consult and understand the three-component reaction involved in aryne, the progresses in the three-component reaction involving aryne in recent years are reviewed.

参考文献

[1]
(a) Demmer, C. S.; KrogsgaardLarsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
[1]
(b) Montchamp, J. L. Acc. Chem. Res. 2014, 47, 77.
[1]
(c) Zhang, J.; Ding, D.; Wei, Y.; Xu, H. Chem. Sci. 2016, 7, 2870.
[2]
(a) Otzen, T.; Wempe, E. G.; Kunz, B.; Seydel, J. K. J. Med. Chem. 2004, 47, 240.
[2]
(b) Zhang, K.; Xu, X.; Qing, F. Chin. J. Org. Chem. 2015, 35, 556. (in Chinese)
[2]
(张柯, 徐修华, 卿凤翎, 有机化学, 2015, 35, 556.)
[2]
(c) Lee, C. F.; Liu, Y. C.; Badsara, S. S. Chem.-Asian J. 2014, 9, 706.
[2]
(d) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
[3]
(a) Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029.
[3]
(b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
[4]
(a) Wang, Y.; Wu. M.; Ding, Y. Chin. J. Org. Chem. 2010, 30, 757. (in Chinese)
[4]
(王勇, 吴梅, 丁贻祥, 有机化学, 2010, 30, 757.)
[4]
(b) Xu, Q.; Jia, X.; Li, X.; Sun, Q.; Zhou, Y.; Yin, S.; Han, L. Chin. J. Org. Chem. 2014, 34, 1340. (in Chinese)
[4]
(徐清, 贾小娟, 李晓慧, 孙清, 周永波, 尹双凤, 韩立彪, 有机化学, 2014, 34, 1340.)
[4]
(c) Jablonkai, E.; Keglevich, G. Curr. Org. Synth. 2014, 11, 429.
[4]
(d) Jablonkai, E.; Keglevich, G. Org. Prep. Proced. Int. 2014, 46, 281.
[5]
(a) Yang, M.; Pei, J.; Yan, G.; Weng, Q. Chin. J. Org. Chem. 2013, 33, 343. (in Chinese)
[5]
(杨明华, 裴吉, 严国兵, 翁秋月, 有机化学, 2013, 33, 343.)
[5]
(b) Umierski, N.; Manolikakes, G. Org. Lett. 2013, 15, 188.
[5]
(c) Johnson, M. W.; Bagley, S. W.; Mankad, N. P.; Mascitti, V.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 4404.
[5]
(d) RichardsTaylor, C. S.; Blakemore, D. C.; Willis, M. C. Chem. Sci. 2014, 52, 12679.
[6]
(a) Wenk, H. H.; Winkler, M.; Sander, W. Angew. Chem., Int. Ed. 2003, 42, 502.
[6]
(b) Okuma, K. Heterocycles 2012, 85, 515.
[6]
(c) Bhojgude, S. S.; Biju, A. T. Angew. Chem., Int. Ed. 2012, 51, 1520.
[6]
(d) Wu, C.; Shi, F. Asian J. Org. Chem. 2013, 2, 116.
[6]
(e) Modha, S. G.; Mehta, V. P.; VanderEycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
[7]
Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 12, 1211.
[8]
Matsuzawa, T.; Yoshida, S.; Hosoya, T. Tetrahedron Lett. 2018, 59, 4197.
[9]
(a) Chen, L.; Zhang, C.; Wen, C.; Zhang, K.; Liu, W.; Chen, Q. Catal. Commun. 2015, 65, 81.
[9]
(b) Chen, Q.; Zhang, C.; Du, Z.; Chen, H.; Zhang, K. Tetrahedron Lett. 2015, 56, 2094.
[9]
(c) Wen, C.; Chen, Q.; He, Z.; Yan, X.; Zhang, C.; Du, Z.; Zhang, K. Tetrahedron Lett. 2015, 56, 5470.
[9]
(d) Chen, Q.; Yan, X.; Du, Z.; Zhang, K.; Wen, C. J. Org. Chem. 2016, 81, 276.
[9]
(e) Chen, Q.; Yan, X.; Wen, C.; Zeng, J.; Huang, Y.; Liu, X.; Zhang, K. J. Org. Chem. 2016, 81, 9476.
[9]
(f) Huang, Y. T.; Chen, Q. Chin. J. Org. Chem. 2020, 40, 4087. (in Chinese)
[9]
(黄远婷, 陈迁, 有机化学, 2020, 40, 4087.)
[9]
(g) Shi, J. R.; Li, L. G.; Li, Y. Chem. Rev. 2021, 121, 3892.
[9]
(h) Kashmiri, N.; Pranjal, G. Synlett 2020, 31, 750.
[10]
(a) Sourav, G.; Daesung, L. Synth. Catal. 2021, 363, 657.
[10]
(b) Kashmiri, N.; Pranjal, G. Org. Biomol. Chem. 2020, 18, 9549.
[11]
Yoshida, S.; Hosoya, T. Chem. Lett. 2013, 42, 583.
[12]
Bhunia, A.; Kaicharla, T.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2014, 50, 11389.
[13]
Bhunia, A.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2014, 16, 5132.
[14]
Bhattacharjee, S.; Raju, A.; Gaykar, R. N.; Gonnade, R. G.; Roy, T.; Biju, A. T. J. Org. Chem. 2020, 15, 2203.
[15]
Xie, P.; Yang, S.; Guo, Y.; Cai, Z.; Dai, B.; He, L. J. Org. Chem. 2020, 85, 8872.
[16]
Huang, Y. T.; Chen, Q. J. Org. Chem. 2021, 86, 7010.
[17]
Jin, J. H.; Kim, J.; Han, S. J. Org. Lett. 2022, 24, 2192.
[18]
Liu, F. L.; Chen, J. R.; Zou, Y. Q.; Wei, Q.; Xiao, W. J. Org. Lett. 2014, 16, 3768.
[19]
Hazarika, H.; Neog, K.; Sharma, A.; Das, B.; Gogoi, P. J. Org. Chem. 2019, 84, 5846.
[20]
Lou, M. M.; Wang, H.; Li, Z. Q.; Guo, X. S.; Zhang, F. G.; Wang, B. J. Org. Chem. 2016, 81, 5915.
[21]
Qiu, D.; Gu, R.; Wang, J.; Shi, J.; Li, Y. J. Am. Chem. Soc. 2016, 138, 10814.
[22]
Dai, L.; Tan, M.; Lan, Y.; Li, Y. J. Am. Chem. Soc. 2021, 143, 10530.
[23]
Hazaria, H.; Gogoi, P. Org. Biomol. Chem. 2020, 18, 2727.
[24]
Arbuzov, B. A. Pure Appl. Chem. 1964, 9, 307.
[25]
Xu, H. D.; Cai, M. Q.; He, W. J.; Hu, W. H.; Shen, M. H. RSC Adv. 2014, 4, 7623.
[26]
(a) Lin, W.; Sapountzis, I.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 4258.
[26]
(b) Yoshida, S.; Hosoya, T. Tetrahedron Lett. 2018, 59, 4197.
[26]
(c) Fan, R.; Tan, C.; Liu, Y. G.; Zhao, X. W.; Tian, J. J.; Yoshidab, H. Chin. Chem. Lett. 2021, 32, 299
[27]
Peng, X. L.; Ma, C.; Xu, Z. H. Org. Lett. 2016, 18. 4154.
[28]
Zeng, Y.; Hu, J. B. Org. Lett. 2016, 18, 856.
[29]
Tadross, P. M.; Stoltz, B. M. Chem. Rev. 2012. 112. 3550.
[30]
Zheng, T.; Tan, J.; Fan, R.; Su, S.; Liu, B.; Tan, C.; Xu, K. Chem. Commun. 2018, 54, 1303.
[31]
Fan, R.; Liu, B.; Zheng, T.; Xu, K.; Tan, C.; Zeng, T.; Su, S.; Tan, J. Chem. Commun. 2018, 54, 7081.
[32]
Jian, H.; Wang, Q.; Wang, W. H.; Li, Z. J.; Gu, C. Z.; Dai, B.; He, L. Tetrahedron 2018, 74, 2876.
[33]
Gaykar, R.; Guin, A.; Bhattacharjee, S.; Biju, A. T. Org. Lett. 2019, 21, 9613.
[34]
Subrata, B.; Akkattu, T.; Biju, A. T. Org. Lett. 2020, 22, 9097.
[35]
Hu, Y. F.; Huang, Y. T.; Zhao, X.; Li, X. W.; Chen, Q. Org. Biomol. Chem. 2021, 19, 7066.
[36]
Garima, J.; Biju, A. T. Org. Lett. 2021, 23, 9083.
[37]
Meng, D. P.; Ni, C. F; Zhou, M.; Li, Y.; Hu, J. B. Chem.-Eur. J. 2022, 28, e202104395.
[38]
Okuma, K.; Hino, H.; Sou, A.; Nagahora, N.; Shioji, K. Chem. Lett. 2009, 38, 1030.
[39]
Okuma, K.; Fukuzaki, Y.; Nojima, A.; Shioji, K.; Yokomori, Y. Tetrahedron Lett. 2008, 49, 3063.
[40]
Okuma, K.; Fukuzaki, Y.; Shioji, K.; Yokomori, Y. Bull. Chem. Soc. Ethiop. 2010, 83, 1238.
[41]
Yoshida, H.; Asatsu, Y.; Mimura, Y.; Ito, Y.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2011, 50, 9676.
[42]
Thangaraj, M.; Bhojgude, S. S.; Mane, M. V.; Biju, A. T. Chem. Commun. 2016, 52, 1665.
[43]
Li, P.; Wu, C.; Zhao, J.; Li, Y.; Xue, W.; Shi, F. Can. J. Chem. 2013, 91, 43.
[44]
Zhou, C.; Wang, J.; Jin, J.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2014, 14, 1832.
[45]
Liu, F.; Yang, H.; Hu, X.; Jiang, G. Org. Lett. 2014, 16, 6408.
[46]
Sharma, A.; Gogoi, P. ChemistrySelect 2017, 2, 11801.
[47]
Wen, L.W.; Man, N. N.; Yuan, W. K.; Li, M. J. Org. Chem. 2016, 81, 5942.
[48]
Neog, K.; Das, B.; Gogoi, P. Org. Biomol. Chem. 2018, 16, 3138.
[49]
Sharma, A.; Gogoi, P. Org. Biomol. Chem. 2019, 17, 333.
[50]
Zhou, M.; Ni, C.; Zeng, Y.; Hu, J. J. Am. Chem. Soc. 2018, 140, 6801.
[51]
Lei, M.; Miao, H.; Zhu, C. J.; Lu, X. Q.; Shen, J.; Qin, Y. R.; Zhang, H. Y.; Sha, S. J.; Zhu, Y. Q. Tetrahedron Lett. 2019, 60, 1389.
[52]
Huang, W. B.; Qiu, L. Q.; Ren, F. Y.; He, L. N. Chem. Commun. 2021, 57, 9578.
[53]
Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2006, 128, 11040.
[54]
Yoshida, H.; Morishita, T.; Ohshita, J. Org. Lett. 2008, 10, 3845.
[55]
Yoshida, H.; Morishita, T.; Fukushima, H.; Ohshita, J.; Kunai, A. Org. Lett. 2007, 9, 3367.
[56]
Morishita, T.; Fukushima, H.; Yoshida, H.; Ohshita, J.; Kunai. A. Asian J. Org. Chem. 2008, 73, 5452.
[57]
Giumanini, A. G. J. Org. Chem. 1972, 37, 513.
[58]
Yan, Q.; Fan, R.; Liu, B. B.; Su, S. S.; Wang, B.; Yao, T. L.; Tan, J. J. Chin. J. Org. Chem. 2021, 41, 455. (in Chinese)
[58]
(闫强, 范荣, 刘斌斌, 苏帅松, 王勃, 姚团利, 谭嘉靖, 有机化学, 2021, 41, 455.)
[59]
Masilamani, J.; Sivakolundu, B. J. Org. Chem. 2010, 5, 153.
[60]
Stephens, D.; Zhang, Y.; Cormier, M.; Chavez, G.; Arman, H.; Larionov, O. V. Chem. Commun. 2013, 49, 6558.
[61]
Tang, C. Y.; Wang, G.; Yang, X. Y.; Wu, X. Y.; Sha, F. Tetrahedron Lett. 2014, 55, 6447.
[62]
Kaldas, S. J.; Kran, E.; Mu?ck, C.; Yudin, A. K.; Studer, A. Chem.- Eur. J. 2020, 26, 1501.
[63]
Roy, T.; Baviskar, D. R.; Biju, A. T. J. Org. Chem. 2015, 80, 11131.
[64]
Roy, T.; Bhojgude, S. S.; Kaicharla, T.; Thangaraj, M.; Garai, B.; Biju, A. T. Org. Chem. Front. 2016, 3, 71.
[65]
Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T. Chem. Commun. 2016, 52, 9044.
[66]
Bhunia, A.; Roy, T.; Pachfule, P.; Rajamohanan, P. R.; Biju, A. T. Angew. Chem., Int. Ed. 2013, 52, 10040.
[67]
Bhunia, A.; Porwal, D.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2013, 15, 4620.
[68]
Liu, P.; Lei, M.; Hu, L. Tetrahedron 2013, 69, 10405.
[69]
Zhou, Y.; Chi, Y.; Zhao, F.; Zhang, W. X.; Xi, Z. Chem.-Eur. J. 2014, 20, 2463.
[70]
Bhojgude, S. S.; Baviskar, D. R.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2015, 17, 6270.
[71]
Liu, K.; Gu, C. Z.; Dai, B.; He, L. RSC Adv. 2016, 6, 33606.
[72]
Bhojgude, S. S.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2016, 18, 5424.
[73]
Okuma, K.; Kinoshita, H.; Nagahora, N.; Shioji, K. Eur. J. Org. Chem. 2016, 2264.
[74]
Shu, W. M.; Ma, J. R.; Zheng, K. L.; Wu, A. X. Org. Lett. 2016, 18, 196.
[75]
Suh, S. E.; Chenoweth, D. M. Org. Lett. 2016, 18, 4080.
[76]
Jeganmohan, M.; Cheng, C. H. Chem. Commun. 2006, 2454.
[77]
Tan, J.; Liu, B.; Su, S. Org. Chem. Front. 2018, 5, 3093.
[78]
Liu, K.; Liu, L. L.; Gu, C. Z.; Dai, B.; He, L. RSC Adv. 2016, 6, 33606.
[79]
Xu, J. K.; Li, S. J.; Wang, H. Y.; Xu, W. C.; Tian, S. K. Chem. Commun. 2017, 53, 1708.
[80]
Guranova, N. I.; Voskressensky, L. G. Mendeleev Commun. 2017, 27, 506.
[81]
Phatake, R. S.; Mullapudi, V.; Wakchaure, V. C.; Ramana, C. V. Org. Lett. 2017, 19, 372.
[82]
Gui, Y.; Tian, S. K. Org. Lett. 2017, 19, 1554.
[83]
Min, G.; Seo, J.; Ko, H. M. J. Org. Chem. 2018, 83, 8417.
[84]
Seo, J.; Kim, D.; Ko, H. M. Adv. Synth. Catal. 2020, 362, 2739.
[85]
Li, S. J.; Wang, Y.; Xu, J. K.; Xie, D.; Tian, S. K.; Yu, Z. X. Org. Lett. 2018, 20, 4545.
[86]
Huang, X.; Zhao, W.; Chen, D. L.; Zhan, Y.; Zeng, T.; Jin, H.; Peng, B. Chem. Commun. 2019, 55, 2070.
[87]
Li, S. J.; Han, L.; Tian, S. K. Chem. Commun. 2019, 55, 11255.
[88]
Dhokale, R. A.; Mhaske, S. B. Org. Lett. 2016, 18, 3010.
[89]
Kwon, J.; Kim, B. M. Org. Lett. 2019, 21, 428.
[90]
Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. Angew. Chem., Int. Ed. 2004, 43, 3935.
[91]
Yoshida, H.; Ohshita, J.; Kunai, A. Tetrahedron Lett. 2004, 45, 8659.
[92]
Yoshida, H.; Kunai, S. Tetrahedron 2007, 63, 4793.
[93]
Xie, C. S.; Zhang, Y. H.; Xu, P. X. Synlett 2008, 3115.
[94]
Huang, X.; Zhang, T. Tetrahedron Lett. 2009, 50, 208.
[95]
Sha, F.; Huang, X. Angew. Chem., Int. Ed. 2009, 48, 3458.
[96]
Sha, F.; Wu, L.; Huang, X. J. Org. Chem. 2012, 77, 3754.
[97]
Shen, H.; Wu, X. Y. Eur. J. Org. Chem. 2013, 13, 2537.
[98]
Gilmore, C. D.; Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 4488.
[99]
Yoshida, H.; Asatsu, Y.; Mimura, Y.; Ito, Y.; Ohshita, J.; Takaki, K. Angew. Chem., Int. Ed. 2011, 50, 9676.
[100]
Kaicharla, T.; Thangaraj, M.; Biju, A. T. Org. Lett. 2014, 16, 1728.
[101]
Fang, Y.; Wang, S. Y.; Ji, S. J. Tetrahedron 2015, 71, 2768.
[102]
Serafini, M.; Griglio, A.; Viarengo, S.; Aprile, S.; Pirali, T. Org. Biomol. Chem. 2017, 15, 6604.
[103]
Li, R.; Wu, C. R.; Shi, F. J. Org. Chem. 2014, 79, 1344.
[104]
Zhang, Y.; Xiong, W.; Cen, J.; Wu, Y.; Qi, C.; Wu, W.; Jiang, H. Chem. Commun. 2019, 55, 12304.
[105]
Shu, W. M.; Zheng, K. L.; Ma, J. R.; Wu, A. X. Org. Lett. 2016, 18, 3762.
[106]
Huang, X.; Xue, J. J. Org. Chem. 2007, 72, 3965.
[107]
Shu, W. M.; Liu, S.; He, J. X.; Wang, S.; Wu, A. X. J. Org. Chem. 2018, 83, 9156.
[108]
Zeng, Y.; Li, G.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 10773.
[109]
Okugawa, Y.; Hayashi, Y.; Kawauchi, S.; Hirano, K.; Miura, M. Org. Lett. 2018, 20, 3670.
[110]
Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835.
[111]
Bhattacharjee, S.; Guin, A.; Gaykar, R. N.; Biju, A. T. Org. Lett. 2019, 21, 4383.
[112]
Jiang, H.; Zhang, Y.; Xiong, W.; Cen, J.; Wang, L.; Cheng, R.; Qi, C.; Wu, W. Org. Lett. 2019, 21, 345.
[113]
Fujimoto, H.; Kusano, M.; Kodama, T.; Tobisu, M. Org. Lett. 2020, 22, 229.
文章导航

/