综述与进展

自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展

  • 张建涛 ,
  • 邓雅文 ,
  • 莫诺琳 ,
  • 陈莲芬
展开
  • a 广东石油化工学院化学学院 广东茂名 525000
    b 肇庆学院环境与化学工程学院 广东肇庆 526061

收稿日期: 2022-08-21

  修回日期: 2022-10-07

  网络出版日期: 2022-11-08

基金资助

广东石油化工学院人才引进计划(2019rc048); 国家自然科学基金(22002139); 广东省基础与应用基础研究基金(2019A1515110550)

Advances in Radical Mediated 1,2-Aryl Migration Reactions of α,α-Diarylallyl Alcohols

  • Jiantao Zhang ,
  • Yawen Deng ,
  • Nuolin Mo ,
  • Lianfen Chen
Expand
  • a College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000
    b School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, Guangdong 526061
* Corresponding authors. E-mail: ;

Received date: 2022-08-21

  Revised date: 2022-10-07

  Online published: 2022-11-08

Supported by

Projects of Talents Recruitment of Guangdong University of Petrochemical Technology(2019rc048); National Natural Science Foundation of China(22002139); Guangdong Basic and Applied Basic Research Foundation(2019A1515110550)

摘要

作为一种广泛使用的结构单元, 烯丙醇无需预官能化即可直接参与合成反应. 近年来, 烯丙醇的迁移反应得到了极大的关注, 这类反应往往通过半频哪醇或neophyl重排等方式实现, 为各种重要羰基化合物的合成提供了一种强有力的策略. 系统综述了二芳基烯丙醇作为合成子时, 涉及自由基引发基团迁移反应的最新进展, 讨论了反应范围、局限性以及部分机理, 并对该领域存在的挑战以及未来发展趋势进行展望.

本文引用格式

张建涛 , 邓雅文 , 莫诺琳 , 陈莲芬 . 自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展[J]. 有机化学, 2023 , 43(2) : 426 -435 . DOI: 10.6023/cjoc202208028

Abstract

As widely used building blocks, allyl alcohols can directly participate in the synthesis reaction without pre-functionalization. In recent years, the migration reaction of allyl alcohols has received great attention, and such reactions are often realized by semipinacol or neophyl rearrangement, providing a powerful strategy for the synthesis of various important carbonyl compounds. The latest progress of radical-initiated group migration reactions involving diaryl allyl alcohols as synthons systematically is reviewed, the scope, limitations and some mechanisms of the reaction are discussed, and the challenges and future development trends in this field are prospected.

参考文献

[1]
(a) Zhang, D.; Zhang, Y.; Wu, H.; Gong, L. Angew. Chem., Int. Ed. 2019, 58, 7450.
[1]
(b) Zhang, X.; Zhang, Z.; Song, J.; Wang, Z. Chem. Sci. 2020, 11, 7921.
[1]
(c) Guo, G.; Yuan, Y.; Wan, S.; Cao, X.; Sun, Y.; Huo, C. Org. Chem. Front. 2021, 8, 2990.
[1]
(d) Xing, Y.; Li, C.; Meng, J.; Zhang, Z.; Wang, X.; Wang, Z.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 3913.
[2]
(a) Li, H.; Zhang, F.; Tu, Y.; Zhang, Q.; Chen, Z.; Chen, Z.; Li, J. Chem. Sci. 2011, 2, 1839.
[2]
(b) Wang, B.; Tu, Y.-Q. Acc. Chem. Res. 2011, 44, 1207.
[2]
(c) Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615.
[2]
(d) Liu, Y.; Tse, Y.; Kwong, F.; Yeung, Y. ACS Catal. 2017, 7, 4435.
[3]
(a) Wu, P.; Wu, K.; Wang, L.; Yu, Z. Org. Lett. 2017, 19, 5450.
[3]
(b) Weng, W.-Z.; Zhang, B. Chem.-Eur. J. 2018, 24, 10934.
[3]
(c) Fang, J.; Dong, W.-L.; Xu, G.-Q.; Xu, P.-F. Org. Lett. 2019, 21, 4480.
[3]
(d) Tian, T.; Wang, X.; Lv, L.; Li, Z. Chem. Commun. 2020, 56, 14637.
[4]
(a) Chen, Z.; Bai, W.; Wang, S.; Yang, B.; Tu, Y.; Zhang, F. Angew. Chem., Int. Ed. 2013, 52, 9781.
[4]
(b) Kang, J.; Tu, Y.; Dong, J.; Chen, C.; Zhou, J.; Ding, T.; Zai, J.; Chen, Z.; Zhang, S. Org. Lett. 2019, 21, 2536.
[5]
Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
[6]
Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
[7]
Huang, H.; Yan, H.; Gao, G.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
[8]
Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
[9]
Cai, S; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M; Weng, W.; Huang, M. Adv. Synth. Catal. 2018, 360, 4084.
[10]
Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224.
[11]
Guan, Z.; Wang, H.; Huang, Y.; Wang, Y.; Wang, S.; Lei, A. Org. Lett. 2019, 21, 4619.
[12]
Zhang, Y.; Ren, Z.; Liu, Y.; Wang, Z.; Li, Z. Eur. J. Org. Chem. 2020, 2020, 5192.
[13]
Liu, K.; Jin, Q.; Chen, S.; Liu, P. RSC Adv. 2017, 7, 1546.
[14]
(a) Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 10510.
[14]
(b) Qi, L.; Li, R.; Yao, X.; Zhen, Q.; Ye, P.; Shao, Y.; Chen, J. J. Org. Chem. 2020, 85, 1097.
[14]
(c) Gao, Y.; Quan, Y.; Li, Z.; Gao, L.; Zhang, Z.; Zou, X.; Yan, R.; Qu, Y.; Guo, K. Org. Lett. 2021, 23, 183.
[15]
Bunescu, A.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 3132.
[16]
Chu, X; Meng, H.; Zi, Y.; Xu, X.; Ji, S. Org. Chem. Front. 2015, 2, 216.
[17]
Li, Y.; Liu, B.; Li, H.; Wang, Q.; Li, J. Chem. Commun. 2015, 51, 1024.
[18]
Wang, Q.; Chen, Z.; Zhou, C.; Xiong, B.; Zhang, P.; Yang, C; Liu, Y.; Zhou, Q. Tetrahedron Lett. 2018, 59, 4551.
[19]
(a) Setzer, P.; Beauseigneur, A.; Pearson-Long, M. S. M.; Bertus, P. Angew. Chem., Int. Ed. 2010, 49, 8691.
[19]
(b) Huang, S. L.; K?tzner, L.; De, C. K.; List, B. J. Am. Chem. Soc. 2015, 137, 3446.
[20]
Zheng, L.; Huang, H.; Yang, C.; Xia, W. Org. Lett. 2015, 17, 1034.
[21]
Li, Y.; Leng, Y.; Wang, S.; Gao, Y.; Lv, H.; Chang, J.; Wu, Y.; Wu, Y. Appl. Organomet. Chem. 2018, 32, 4407.
[22]
Sarkar, S.; Banerjee, A.; Yao, W.; Patterson, E. V.; Ngai, M. ACS Catal. 2019, 9, 10358.
[23]
Pan, C.; Ni, Q.; Fu, Y.; Yu, J. J. Org. Chem. 2017, 82, 7683.
[24]
Chu, X.; Meng, H.; Zi, Y.; Xu, X.; Ji, S. Chem. Commun. 2014, 50, 9718.
[25]
Chu, X.; Meng, H.; Zi, Y.; Xu, X.; Ji, S. Chem.-Eur. J. 2014, 20, 17198.
[26]
Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y. Chem. Commun. 2015, 51, 599.
[27]
Song, R.; Tu, Y.; Zhu, D.; Zhang, F.; Wang, S. Chem. Commun. 2015, 51, 749.
[28]
(a) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew. Chem., Int. Ed. 2010, 49, 5832.
[28]
(b) Wojaczynska, E.; Wojaczynski, J. Chem. Rev. 2010, 110, 4303.
[29]
Lu, M; Qin, H; Lin, Z.; Huang, M.; Weng, W.; Cai, S. Org. Lett. 2018, 20, 7611.
[30]
Lin, Z.; Lu, M.; Liu, B.; Gao, J.; Huang, M.; Gan, Z.; Cai, S. New J. Chem. 2020, 44, 16031.
[31]
Zhu, Z.; Chen, X.; Liu, S.; Zhang, J.; Shen, X. Eur. J. Org. Chem. 2021, 2021, 4927.
[32]
(a) Dong, X.; Wang, W.; Li, H.; Xu, Q.; Ye, L.; Li, X.; Zhao, Z.; Li, X. Org. Chem. Front. 2021, 8, 3260.
[32]
(b) Victoria-Miguel, J.; García-Santos, W. H.; Cordero-Vargas, A. J. Org. Chem. 2022, 87, 9088.
[33]
Hu, W.; Sun, S.; Cheng, J. J. Org. Chem. 2016, 81, 4399.
[34]
Ge, D.; Luo, X; Tang, X.; Pang, C.; Wang, X.; Chu, X. Org. Biomol. Chem. 2021, 19, 2277.
[35]
(a) Banerjee, I.; Panda, T. K. Org. Biomol. Chem. 2021, 19, 6571.
[35]
(b) Hore, S.; Singh, R. P. Org. Biomol. Chem. 2022, 20, 498.
[36]
Chu, X.; Zi, Y.; Meng, H.; Xu, X.; Ji, S. Chem. Commun. 2014, 50, 7642.
[37]
Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Org. Biomol. Chem. 2014, 12, 8394.
[38]
Yin, Y.; Weng, W.; Sun, J.; Zhang, B. Org. Biomol. Chem. 2018, 16, 2356.
[39]
Wang, C.; Huang, X.; Liu, X.; Gao, S.; Zhao, B.; Yang, S. Chin. Chem. Lett. 2020, 31, 677.
[40]
Yu, Y.; Tambar, U. K. Chem. Sci. 2015, 6, 2777.
[41]
Li, Y.; Liu, B.; Ouyang, X.; Song, R.; Li, J. Org. Chem. Front. 2015, 2, 1457.
[42]
Huang, H.; Yan, H.; Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910.
[43]
Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.
[44]
Ge, D.; Wang, X.; Chu, X. Tetrahedron Lett. 2021, 70, 153002.
[45]
Hu, L.; Deng, Q.; Zhou, Y.; Zhang, X.; Xiong, Y. Tetrahedron 2020, 76, 130949.
[46]
(a) Matsuda, Y.; Tsuji, Y.; Fujihara, T. Chem. Commun. 2020, 56, 4648.
[46]
(b) Zhang, Y.; Guo, J.; Han, J.; Zhou, X.; Cao, W.; Fu, Z. Org. Biomol. Chem. 2021, 19, 6412.
[47]
Peng, H.; Yu, J.; Jiang, Y.; Cheng, J. Org. Biomol. Chem. 2015, 13, 10299.
[48]
Deng, Z.; Chen, C.; Cui, S. RSC Adv. 2016, 6, 93753.
[49]
Weng, W.; Sun, J.; Li, P.; Zhang, B. Chem. Eur. J. 2017, 23, 9752.
文章导航

/