有机化学 ›› 2023, Vol. 43 ›› Issue (2): 426-435.DOI: 10.6023/cjoc202208028 上一篇 下一篇
综述与进展
张建涛a,*(), 邓雅文a, 莫诺琳a, 陈莲芬b,*()
收稿日期:
2022-08-21
修回日期:
2022-10-07
发布日期:
2022-11-07
基金资助:
Jiantao Zhanga(), Yawen Denga, Nuolin Moa, Lianfen Chenb()
Received:
2022-08-21
Revised:
2022-10-07
Published:
2022-11-07
Contact:
*E-mail: Supported by:
文章分享
作为一种广泛使用的结构单元, 烯丙醇无需预官能化即可直接参与合成反应. 近年来, 烯丙醇的迁移反应得到了极大的关注, 这类反应往往通过半频哪醇或neophyl重排等方式实现, 为各种重要羰基化合物的合成提供了一种强有力的策略. 系统综述了二芳基烯丙醇作为合成子时, 涉及自由基引发基团迁移反应的最新进展, 讨论了反应范围、局限性以及部分机理, 并对该领域存在的挑战以及未来发展趋势进行展望.
张建涛, 邓雅文, 莫诺琳, 陈莲芬. 自由基介导的α,α-二芳基烯丙醇1,2-芳基迁移反应研究进展[J]. 有机化学, 2023, 43(2): 426-435.
Jiantao Zhang, Yawen Deng, Nuolin Mo, Lianfen Chen. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α,α-Diarylallyl Alcohols[J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 426-435.
[1] |
(a) Zhang, D.; Zhang, Y.; Wu, H.; Gong, L. Angew. Chem., Int. Ed. 2019, 58, 7450.
doi: 10.1002/anie.201903007 |
(b) Zhang, X.; Zhang, Z.; Song, J.; Wang, Z. Chem. Sci. 2020, 11, 7921.
doi: 10.1039/D0SC02559C |
|
(c) Guo, G.; Yuan, Y.; Wan, S.; Cao, X.; Sun, Y.; Huo, C. Org. Chem. Front. 2021, 8, 2990.
doi: 10.1039/D1QO00148E |
|
(d) Xing, Y.; Li, C.; Meng, J.; Zhang, Z.; Wang, X.; Wang, Z.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 3913.
doi: 10.1002/adsc.202100446 |
|
[2] |
(a) Li, H.; Zhang, F.; Tu, Y.; Zhang, Q.; Chen, Z.; Chen, Z.; Li, J. Chem. Sci. 2011, 2, 1839.
doi: 10.1039/c1sc00295c |
(b) Wang, B.; Tu, Y.-Q. Acc. Chem. Res. 2011, 44, 1207.
doi: 10.1021/ar200082p |
|
(c) Chai, Z.; Rainey, T. J. J. Am. Chem. Soc. 2012, 134, 3615.
doi: 10.1021/ja2102407 |
|
(d) Liu, Y.; Tse, Y.; Kwong, F.; Yeung, Y. ACS Catal. 2017, 7, 4435.
doi: 10.1021/acscatal.7b01056 |
|
[3] |
(a) Wu, P.; Wu, K.; Wang, L.; Yu, Z. Org. Lett. 2017, 19, 5450.
doi: 10.1021/acs.orglett.7b02751 pmid: 31150265 |
(b) Weng, W.-Z.; Zhang, B. Chem.-Eur. J. 2018, 24, 10934.
doi: 10.1002/chem.201800004 pmid: 31150265 |
|
(c) Fang, J.; Dong, W.-L.; Xu, G.-Q.; Xu, P.-F. Org. Lett. 2019, 21, 4480.
doi: 10.1021/acs.orglett.9b01329 pmid: 31150265 |
|
(d) Tian, T.; Wang, X.; Lv, L.; Li, Z. Chem. Commun. 2020, 56, 14637.
doi: 10.1039/D0CC06774A pmid: 31150265 |
|
[4] |
(a) Chen, Z.; Bai, W.; Wang, S.; Yang, B.; Tu, Y.; Zhang, F. Angew. Chem., Int. Ed. 2013, 52, 9781.
doi: 10.1002/anie.201304557 |
(b) Kang, J.; Tu, Y.; Dong, J.; Chen, C.; Zhou, J.; Ding, T.; Zai, J.; Chen, Z.; Zhang, S. Org. Lett. 2019, 21, 2536.
doi: 10.1021/acs.orglett.9b00263 |
|
[5] |
Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962.
doi: 10.1002/anie.201302673 |
[6] |
Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.
doi: 10.1039/c3cc43936d |
[7] |
Huang, H.; Yan, H.; Gao, G.; Yang, C.; Xia, W. Asian J. Org. Chem. 2015, 4, 674.
doi: 10.1002/ajoc.201500096 |
[8] |
Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683.
doi: 10.1021/cr400473a |
[9] |
Cai, S; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M; Weng, W.; Huang, M. Adv. Synth. Catal. 2018, 360, 4084.
doi: 10.1002/adsc.201800726 |
[10] |
Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224.
doi: 10.1039/C8QO00430G |
[11] |
Guan, Z.; Wang, H.; Huang, Y.; Wang, Y.; Wang, S.; Lei, A. Org. Lett. 2019, 21, 4619.
doi: 10.1021/acs.orglett.9b01518 |
[12] |
Zhang, Y.; Ren, Z.; Liu, Y.; Wang, Z.; Li, Z. Eur. J. Org. Chem. 2020, 2020, 5192.
doi: 10.1002/ejoc.202000782 |
[13] |
Liu, K.; Jin, Q.; Chen, S.; Liu, P. RSC Adv. 2017, 7, 1546.
doi: 10.1039/C6RA25378D |
[14] |
(a) Wu, G.; Deng, Y.; Wu, C.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2014, 53, 10510.
doi: 10.1002/anie.201406765 pmid: 33336577 |
(b) Qi, L.; Li, R.; Yao, X.; Zhen, Q.; Ye, P.; Shao, Y.; Chen, J. J. Org. Chem. 2020, 85, 1097.
doi: 10.1021/acs.joc.9b02999 pmid: 33336577 |
|
(c) Gao, Y.; Quan, Y.; Li, Z.; Gao, L.; Zhang, Z.; Zou, X.; Yan, R.; Qu, Y.; Guo, K. Org. Lett. 2021, 23, 183.
doi: 10.1021/acs.orglett.0c03907 pmid: 33336577 |
|
[15] |
Bunescu, A.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2015, 54, 3132.
doi: 10.1002/anie.201411657 |
[16] |
Chu, X; Meng, H.; Zi, Y.; Xu, X.; Ji, S. Org. Chem. Front. 2015, 2, 216.
doi: 10.1039/C4QO00314D |
[17] |
Li, Y.; Liu, B.; Li, H.; Wang, Q.; Li, J. Chem. Commun. 2015, 51, 1024.
doi: 10.1039/C4CC08902B |
[18] |
Wang, Q.; Chen, Z.; Zhou, C.; Xiong, B.; Zhang, P.; Yang, C; Liu, Y.; Zhou, Q. Tetrahedron Lett. 2018, 59, 4551.
doi: 10.1016/j.tetlet.2018.11.025 |
[19] |
(a) Setzer, P.; Beauseigneur, A.; Pearson-Long, M. S. M.; Bertus, P. Angew. Chem., Int. Ed. 2010, 49, 8691.
doi: 10.1002/anie.201003923 |
(b) Huang, S. L.; Kötzner, L.; De, C. K.; List, B. J. Am. Chem. Soc. 2015, 137, 3446.
doi: 10.1021/ja511200j |
|
[20] |
Zheng, L.; Huang, H.; Yang, C.; Xia, W. Org. Lett. 2015, 17, 1034.
doi: 10.1021/acs.orglett.5b00144 |
[21] |
Li, Y.; Leng, Y.; Wang, S.; Gao, Y.; Lv, H.; Chang, J.; Wu, Y.; Wu, Y. Appl. Organomet. Chem. 2018, 32, 4407.
|
[22] |
Sarkar, S.; Banerjee, A.; Yao, W.; Patterson, E. V.; Ngai, M. ACS Catal. 2019, 9, 10358.
doi: 10.1021/acscatal.9b03570 |
[23] |
Pan, C.; Ni, Q.; Fu, Y.; Yu, J. J. Org. Chem. 2017, 82, 7683.
doi: 10.1021/acs.joc.7b01255 |
[24] |
Chu, X.; Meng, H.; Zi, Y.; Xu, X.; Ji, S. Chem. Commun. 2014, 50, 9718.
doi: 10.1039/C4CC04282D |
[25] |
Chu, X.; Meng, H.; Zi, Y.; Xu, X.; Ji, S. Chem.-Eur. J. 2014, 20, 17198.
doi: 10.1002/chem.201404463 |
[26] |
Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y. Chem. Commun. 2015, 51, 599.
doi: 10.1039/C4CC07654K |
[27] |
Song, R.; Tu, Y.; Zhu, D.; Zhang, F.; Wang, S. Chem. Commun. 2015, 51, 749.
doi: 10.1039/C4CC08797F |
[28] |
(a) Smith, L. H. S.; Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew. Chem., Int. Ed. 2010, 49, 5832.
doi: 10.1002/anie.201000517 |
(b) Wojaczynska, E.; Wojaczynski, J. Chem. Rev. 2010, 110, 4303.
doi: 10.1021/cr900147h |
|
[29] |
Lu, M; Qin, H; Lin, Z.; Huang, M.; Weng, W.; Cai, S. Org. Lett. 2018, 20, 7611.
doi: 10.1021/acs.orglett.8b03340 |
[30] |
Lin, Z.; Lu, M.; Liu, B.; Gao, J.; Huang, M.; Gan, Z.; Cai, S. New J. Chem. 2020, 44, 16031.
doi: 10.1039/D0NJ03733H |
[31] |
Zhu, Z.; Chen, X.; Liu, S.; Zhang, J.; Shen, X. Eur. J. Org. Chem. 2021, 2021, 4927.
doi: 10.1002/ejoc.202100860 |
[32] |
(a) Dong, X.; Wang, W.; Li, H.; Xu, Q.; Ye, L.; Li, X.; Zhao, Z.; Li, X. Org. Chem. Front. 2021, 8, 3260.
doi: 10.1039/D1QO00367D |
(b) Victoria-Miguel, J.; García-Santos, W. H.; Cordero-Vargas, A. J. Org. Chem. 2022, 87, 9088.
doi: 10.1021/acs.joc.2c00758 |
|
[33] |
Hu, W.; Sun, S.; Cheng, J. J. Org. Chem. 2016, 81, 4399.
doi: 10.1021/acs.joc.6b00643 |
[34] |
Ge, D.; Luo, X; Tang, X.; Pang, C.; Wang, X.; Chu, X. Org. Biomol. Chem. 2021, 19, 2277.
doi: 10.1039/D0OB02593C |
[35] |
(a) Banerjee, I.; Panda, T. K. Org. Biomol. Chem. 2021, 19, 6571.
doi: 10.1039/D1OB01019K |
(b) Hore, S.; Singh, R. P. Org. Biomol. Chem. 2022, 20, 498.
doi: 10.1039/D1OB02003J |
|
[36] |
Chu, X.; Zi, Y.; Meng, H.; Xu, X.; Ji, S. Chem. Commun. 2014, 50, 7642.
doi: 10.1039/c4cc02114b |
[37] |
Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Org. Biomol. Chem. 2014, 12, 8394.
doi: 10.1039/C4OB01739K |
[38] |
Yin, Y.; Weng, W.; Sun, J.; Zhang, B. Org. Biomol. Chem. 2018, 16, 2356.
doi: 10.1039/C8OB00231B |
[39] |
Wang, C.; Huang, X.; Liu, X.; Gao, S.; Zhao, B.; Yang, S. Chin. Chem. Lett. 2020, 31, 677.
doi: 10.1016/j.cclet.2019.08.011 |
[40] |
Yu, Y.; Tambar, U. K. Chem. Sci. 2015, 6, 2777.
doi: 10.1039/C5SC00505A |
[41] |
Li, Y.; Liu, B.; Ouyang, X.; Song, R.; Li, J. Org. Chem. Front. 2015, 2, 1457.
doi: 10.1039/C5QO00220F |
[42] |
Huang, H.; Yan, H.; Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910.
doi: 10.1039/C4CC10321A |
[43] |
Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.
doi: 10.1039/C5CC01189B |
[44] |
Ge, D.; Wang, X.; Chu, X. Tetrahedron Lett. 2021, 70, 153002.
doi: 10.1016/j.tetlet.2021.153002 |
[45] |
Hu, L.; Deng, Q.; Zhou, Y.; Zhang, X.; Xiong, Y. Tetrahedron 2020, 76, 130949.
doi: 10.1016/j.tet.2020.130949 |
[46] |
(a) Matsuda, Y.; Tsuji, Y.; Fujihara, T. Chem. Commun. 2020, 56, 4648.
doi: 10.1039/D0CC01803A pmid: 34235529 |
(b) Zhang, Y.; Guo, J.; Han, J.; Zhou, X.; Cao, W.; Fu, Z. Org. Biomol. Chem. 2021, 19, 6412.
doi: 10.1039/d1ob00981h pmid: 34235529 |
|
[47] |
Peng, H.; Yu, J.; Jiang, Y.; Cheng, J. Org. Biomol. Chem. 2015, 13, 10299.
doi: 10.1039/C5OB01855B |
[48] |
Deng, Z.; Chen, C.; Cui, S. RSC Adv. 2016, 6, 93753.
doi: 10.1039/C6RA20007A |
[49] |
Weng, W.; Sun, J.; Li, P.; Zhang, B. Chem. Eur. J. 2017, 23, 9752.
doi: 10.1002/chem.201702428 |
[1] | 席敏, 段超, 迟捷, 付甜, 苏小龙, 王宏社. 腐殖酸作用下Strecker反应快速高效合成α-氨基腈[J]. 有机化学, 2023, 43(9): 3312-3318. |
[2] | 吴文倩, 陈春霞, 彭进松, 李占宇. 羰基α-位胺化反应研究进展[J]. 有机化学, 2023, 43(8): 2743-2763. |
[3] | 孔德亮, 戴闻, 赵怡玲, 陈艺林, 朱红平. 脒基胺硼基硅宾与单酮和二酮的氧化环加成反应研究[J]. 有机化学, 2023, 43(5): 1843-1851. |
[4] | 曹伟地, 刘小华. 不对称催化质子化构建α-叔碳羰基化合物研究进展[J]. 有机化学, 2023, 43(3): 961-973. |
[5] | 马志伟, 陈晓培, 王川川, 王建玲, 陶京朝, 吕全建. 手性方酰胺催化环状1,3-二羰基化合物对β,γ-不饱和-α-酮酯的不对称Michael加成反应[J]. 有机化学, 2022, 42(5): 1520-1526. |
[6] | 张锋, 周鹿, 杨凯, 宋秋玲. 基于四配位硼的1,2-迁移反应研究进展[J]. 有机化学, 2022, 42(4): 1013-1032. |
[7] | 薛飞雪, 曾建伟, 严泰山, 韩杰, 贺峥杰. P(NMe2)3介导1,2-二羰基化合物与α,β-不饱和酮的[1+4]环化反应及多取代2,3-二氢呋喃的合成[J]. 有机化学, 2022, 42(11): 3805-3815. |
[8] | 高珠鹏, 项锴, 徐学涛, 张雅婷, 朱道勇. 环状三价碘试剂参与的β-二羰基化合物的α-苯甲酰氧基化反应[J]. 有机化学, 2022, 42(11): 3766-3775. |
[9] | 赵雯辛, 黄孟君, 李胜男, 刘玉静, 刘中秋, 应安国. SnCl2@MNPs催化Biginelli反应一锅法合成3,4-二氢嘧啶-2-酮衍生物[J]. 有机化学, 2021, 41(7): 2743-2749. |
[10] | 杨晓宇, 柳建林, 胡方芝, 孙红梅, 王亮, 李帅帅. 4-羟基香豆素在四氢喹啉及二香豆素内盐合成中的应用[J]. 有机化学, 2021, 41(7): 2788-2799. |
[11] | 刘嘉豪, 张世冬, 栾自鸿, 刘艳, 柯卓锋. 钌选择性催化烯丙醇无受体脱氢合成α,β-不饱和羰基化合物[J]. 有机化学, 2021, 41(11): 4361-4369. |
[12] | 万万, 刘继兵, 黄学良. 金催化选择性氧化共轭炔基炔酰胺合成4-羰基丁-2-炔酰胺[J]. 有机化学, 2021, 41(1): 376-383. |
[13] | 从屹康, 曾祥华. 纳米Cu-CuFe2O4在乙醇中催化选择性还原α,β,γ,δ-不饱和羰基化合物[J]. 有机化学, 2020, 40(8): 2411-2418. |
[14] | 全积宁, 何小雪, 严新焕, 李小青, 许响生. 叔丁基过氧化氢和碘介导的烯基化二羰基化合物的碘环化合成5-碘甲基二氢呋喃[J]. 有机化学, 2020, 40(4): 1033-1037. |
[15] | 杜琳琳, 李铁生. 光诱导的二芳基烯丙醇氰甲基化合成δ-酮腈的反应研究[J]. 有机化学, 2020, 40(1): 140-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||