综述与进展

非共轭丁烯内酯α-和β-位反应研究进展

  • 周林 ,
  • 杨鸿 ,
  • 杨川 ,
  • 赵志刚 ,
  • 李清寒
展开
  • 西南民族大学化学与环境学院 成都 610041

收稿日期: 2022-10-28

  修回日期: 2023-01-16

  网络出版日期: 2023-02-07

基金资助

国家自然科学基金(22001219); 四川省自然科学基金(2022NSFSC1189)

Advances on the α- and β-Reactions of Deconjugated Butenolides

  • Lin Zhou ,
  • Hong Yang ,
  • Chuan Yang ,
  • Zhigang Zhao ,
  • Qinghan Li
Expand
  • College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041

Received date: 2022-10-28

  Revised date: 2023-01-16

  Online published: 2023-02-07

Supported by

National Natural Science Foundation of China(22001219); Natural Science Foundation of Sichuan Province(2022NSFSC1189)

摘要

γ-内酯衍生物大多具有抗炎、抗肿瘤和抗癌等生物活性, 发展γ-内酯衍生物的构建方法在有机合成中具有重要价值. 其中, 以非共轭丁烯内酯为起始原料的构建方案呈现出巨大的潜力和无可比拟的优势, 是最直接、高效的方法, 受到化学家的广泛关注, 是近年来有机合成研究热点之一. 综述了非共轭丁烯内酯α-和β-位参与的反应研究进展, 重点概述了各类反应体系的特点, 并对部分反应的机理进行了讨论. 同时, 对该领域未来发展方向进行了展望.

本文引用格式

周林 , 杨鸿 , 杨川 , 赵志刚 , 李清寒 . 非共轭丁烯内酯α-和β-位反应研究进展[J]. 有机化学, 2023 , 43(7) : 2407 -2424 . DOI: 10.6023/cjoc202210035

Abstract

Developing the construction methods of γ-lactone derivatives due to their anti-inflammatory, antitumor, anti-cancer and other biological activities has important value in organic synthesis. Among them, the deconjugated butenolides have shown great potential and advantages in the synthesis of γ-lactone derivatives. As the direct and efficient method, it has attracted more attentions of chemists, and is one of the hot topics of organic synthesis in recent years. The α- and β-reactions of deconjugated butenolides are reviewed, in which the characteristics of various reaction systems and the mechanisms of some reactions are discussed. At the same time, the future development is prospected in this field.

参考文献

[1]
For selected reviews and examples, see: (a) Kitson, R.R.A.; Millemaggi, A.; Taylor, R., J. K. Angew. Chem., Int. Ed. 2009, 48, 9426.
[1]
(b) Lone, S. H.; Bhat, K. A.; Khuroo, M. A. Chem.-Biol. Interact. 2015, 240, 180.
[1]
(c) Yu, X.; Che, Z.; Xu, H. Chem.-Eur. J. 2017, 23, 4467.
[1]
(d) Curti, C.; Battistini, L.; Sartori, A.; Zanardi, F. Chem. Rev. 2020, 120, 2448.
[1]
(e) Choudhury, A. R.; Mukherjee, S. Chem. Soc. Rev. 2020, 49, 6755.
[1]
(f) Boeckman, R. K.; Pero, J. E.; Boehmler, D. J. J. Am. Chem. Soc. 2006, 128, 11032.
[1]
(g) Robichaud, J.; Tremblay, F. Org. Lett. 2006, 8, 597.
[1]
(h) Zhang, X.; Yin, Y.; Zhou, Y.; Zhu, T.; Wang, M.; Gao, H. Chin. J. Chem. 2022, 40, 617.
[1]
(i) You, J.-Q.; Liu, Y.-N.; Zhou, J.-S.; Sun, X.-Y.; Lei, C.; Mu, Q.; Li, J.-Y.; Hou, A.-J. Chin. J. Chem. 2022, 40, 2882.
[1]
(j) Zhang, H.; Nan, F. Chin. J. Chem. 2013, 31, 84.
[1]
(k) Tang, B.; Guan, A.; Zhao, Y.; Jiang, J.; Wang, M.; Zhou, L. Chin. J. Chem. 2017, 35, 1133.
[1]
(l) Wang, Y.; Chen, B.; He, X.; Gui, J. Chin. J. Chem. 2020, 38, 1339.
[2]
(a) Ma, S.-M.; Shi, Z.-J. Chin. J. Chem. 2001, 19, 1280.
[2]
(b) Wang, J. P.; Chang, X. H.; Tian, X. Z.; Chen, Q. H. Acta Chim. Sinica 2003, 61, 411 (in Chinese).
[2]
(王建平, 常新红, 田欣哲, 陈庆华, 化学学报, 2003, 61, 411.)
[2]
(c) Zhao, Y.; Jiang, S.; Guo, Y.-W.; Yao, Z.-J. Chin. J. Chem. 2005, 23, 173.
[2]
(d) Zhao, Y.; Tang, B.; Liu, X.; Li, W. Z.; Huang, M. Y.; Wang, M. A. Chin. J. Org. Chem. 2017, 37, 975 (in Chinese).
[2]
(赵宇, 汤博, 刘鑫磊, 李婉祯, 黄铭一, 王明安, 有机化学, 2017, 37, 975.)
[2]
(e) Li, X.; Zhu, K.; Han, Q.; Lu, X. X.; Li, M. J.; Ling, Y.; Duan, H. X. Chin. J. Org. Chem. 2022, 42, 202 (in Chinese).
[2]
(李想, 朱凯, 韩清, 路星星, 李明君, 凌云, 段红霞, 有机化学, 2022, 42, 202.)
[2]
(f) Zhang, Q.; Li, Y. H.; Xu, L. C.; Ma, H. Y.; Li, X. D.; Wang, M. A. Chin. J. Org. Chem. 2022, 42, 2438 (in Chinese).
[2]
(张倩, 李益豪, 许磊川, 马好运, 李向东, 王明安, 有机化学, 2022, 42, 2438.)
[3]
(a) Das, U.; Chen, Y.-R.; Tsai, Y.-L.; Lin, W. Chem.-Eur. J. 2013, 19, 7713.
[3]
(b) Rout, S.; Das, A.; Singh, V. K. Chem. Commun. 2017, 53, 5143.
[4]
(a) Adekenov, S. M.; Mukhametzhanov, M. N.; Kagarlitskii, A. D.; Kupriyanov, A. N. Khim. Prir. Soedin. 1982, 655.
[4]
(b) Zhangabylov, N. S.; Dederer, L. Y.; Gorbacheva, L. B.; Vasilêva, S. V.; Terekhov, A. S.; Adekenov, S. M. Pharm. Chem. J. 2004, 38, 651.
[5]
Aubert, S.; Katsina, T.; Arseniyadis, S. Org. Lett. 2019, 21, 2231.
[6]
For selected reviews, see: (a) Jusseau, X.; Chabaud, L.; Guillou, C. Tetrahedron 2014, 70, 2595.
[6]
(b) Roselló, M. S.; del Pozoa, C.; Fustero, S. Synthesis 2016, 48, 2553.
[6]
(c) Mao, B.; Fan?anas-Mastral, M.; Feringa, B. L. Chem. Rev. 2017, 117, 10502.
[6]
(d) Yin, Y.; Jiang, Z. ChemCatChem 2017, 9, 4306.
[6]
(e) Li, H.; Yin, L. Tetrahedron Lett. 2018, 59, 4121.
[7]
For selected examples on activated silyloxyfurans, see: (a) Redero, E.; Sandoval, C.; Bermejo, F. Tetrahedron 2001, 57, 9597.
[7]
(b) Singh, R. P.; Foxman, B. M.; Deng, L. J. Am. Chem. Soc. 2010, 132, 9558.
[7]
(c) Meshram, H. M.; Ramesh, P.; Reddy, B. C.; Sridhar, B.; Yadav, J. S. Tetrahedron 2011, 67, 3150.
[7]
(d) Mao, B.; Ji, Y.; Fananas-Mastral, M.; Caroli, G.; Meetsma, A.; Feringa, B. L. Angew. Chem., Int. Ed. 2012, 51, 3168.
[7]
(e) Chen, W.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 15249.
[7]
(f) Woyciechowska, M.; Forcher, G.; Buda, S.; Mlynarski, J. Chem. Commun. 2012, 48, 11029.
[7]
(g) Kong, S.; Fan, W.; Lyu, H.; Zhan, J.; Miao, X.; Miao, Z. Synth. Commun. 2014, 44, 936.
[7]
(h) Wang, Y.; Xing, F.; Xue, M.; Du, G.-F.; Guo, X.-H.; Huang, K.-W.; Dai, B. Synthesis 2016, 48, 79.
[7]
(i) Adamkiewicz, A.; W?glarz, I.; Butkiewicz, A.; Woyciechowska, M.; Mlynarski, J. Adv. Synth. Catal. 2020, 362, 667.
[8]
(a) Zhang, Y.; Yu, C.; Ji, Y.; Wang, W. Chem.-Asian J. 2010, 5, 1303.
[8]
(b) Huang, H.; Yu, F.; Jin, Z.; Li, W.; Wu, W.; Liang, X.; Ye, J. Chem. Commun. 2010, 46, 5957.
[8]
(c) Luo, J.; Wang, H.; Han, X.; Xu, L.-W.; Kwiatkowski, J.; Huang, K.-W.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 1861.
[8]
(d) Yin, L.; Takada, H.; Lin, S.; Kumagai, N.; Shibasaki, M. Angew. Chem., Int. Ed. 2014, 53, 5327.
[9]
(a) Cui, H. L.; Huang, J. R.; Lei, J.; Wang, Z. F.; Chen, S.; Wu, L.; Chen, Y. C. Org. Lett. 2010, 12, 720.
[9]
(b) Wu, Y.; Singh, R. P.; Deng, L. J. Am. Chem. Soc. 2011, 133, 12458.
[9]
(c) Griswold, J. A.; Johnson, J. S. ACS Catal. 2019, 9, 11614.
[9]
(d) Yu, C.; Ji, P.; Zhang, Y.; Meng, X.; Wang, W. Org. Lett. 2021, 23, 7656.
[9]
(e) Dai, Z.-Y.; Wang, P.-S.; Gong, L.-Z. Chem. Commun. 2021, 57, 6748.
[10]
(a) Helberger, V. J. H.; Ulubey, S.; Civelekoglu, H. Justus Liebigs Ann. Chem. 1949, 561, 215.
[10]
(b) Karwa, S.; Gajiwala, V. M.; Heltzel, J.; Patil, S. K. R.; Lund, C. R. F. Catal. Today 2016, 263, 16.
[11]
Pelter, A.; Rowlands, M. Tetrahedron Lett. 1987, 28, 1203.
[12]
Marshall, J. A.; Wolf, M. A.; Wallace, E. M. J. Org. Chem. 1997, 62, 367.
[13]
(a) Osman, N. A.; Mahmoud, A. H.; Allara, M.; Niess, R.; Abouzid, K. A.; Marzo, V. D.; Abadi, A. H. Bioorg. Med. Chem. 2010, 18, 8463.
[13]
(b) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R. I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796.
[14]
Lima, C. G. S.; Monteiro, J. L.; Lima, T. Paix?o, M. W.; Corrêa, A. G. ChemSusChem. 2018, 11, 25.
[15]
For selected recent reports on the γ-addition of deconjugated butenolides, see: (a) Quintard, A.; Lefranc, A.; Alexakis, A. Org. Lett. 2011, 13, 1540.
[15]
(b) Zhou, L.; Lin, L.-L.; Ji, J.; Xie, M.-S.; Liu, X.-H.; Feng, X.-M. Org. Lett. 2011, 13, 3056.
[15]
(c) Zhang, W.; Tan, D.; Lee, R.; Tong, G.; Chen, W.; Qi, B.; Huang, K.-W.; Tan, C.-H.; Jiang, Z. Angew. Chem., Int. Ed. 2012, 51, 10069.
[15]
(d) Manna, M. S.; Kumar, V.; Mukherjee, S. Chem. Commun. 2012, 48, 5193.
[15]
(e) Manna, M. S.; Mukherjee, S. Chem.-Eur. J. 2012, 18, 15277.
[15]
(f) Ji, J.; Lin, L.-L.; Zhou, L.; Zhang, Y.-H.; Liu, Y.-B.; Liu, X.-H.; Feng X.-M. Adv. Synth. Catal. 2013, 355, 2764.
[15]
(g) Yang, D.; Wang, L.; Zhao, D.; Han, F.; Zhang, B.; Wang, R. Chem.-Eur. J. 2013, 19, 4691.
[16]
For selected reports on the γ-addition of deconjugated butenolides, see: (a) Guo, Y.-L.; Jia, L.-N.; Peng, L.; Qi, L.-W.; Zhou, J.; Tian, F.; Xu, X.-Y.; Wang, L. -X. RSC Adv. 2013, 3, 16973.
[16]
(b) Kumar, V.; Ray, B.; Rathi, P.; Mukherjee, S. Synthesis 2013, 45, 1641.
[16]
(c) Manna, M. S.; Mukherjee, S. Chem. Sci. 2014, 5, 1627.
[16]
(d) Li, X.; Lu, M.; Dong, Y.; Wu, W.; Qian, Q.; Ye, J.; Dixon, D. J. Nat. Commun. 2014, 4, 4479.
[16]
(e) Wang, Z.-H.; Wu, Z.-J.; Huang, X.-Q.; Yue, D.-F.; You, Y.; Xu, X.-Y.; Zhang, X.-M.; Yuan, W.-C. Chem. Commun. 2015, 51, 15835.
[16]
(f) Guo, H.; Xing, F.; Du, G.-F.; Huang, K.-W.; Dai, B.; He, L. J. Org. Chem. 2015, 80, 12606.
[17]
For selected reports on the γ-addition of deconjugated butenolides, see: (a) Sekikawa, T.; Kitaguchi, T.; Kitaura, H.; Minami, T.; Hatanaka, Y. Org. Lett. 2015, 17, 3026.
[17]
(b) Lagoutte, R.; Besnard, C.; Alexakis, A. Eur. J. Org. Chem. 2016, 4372.
[17]
(c) Simlandy, A. K.; Mukherjee, S. Org. Biomol. Chem. 2016, 14, 5659.
[17]
(d) Tang, Q.; Lin, L.-L.; Ji, J.; Hu, H.-P.; Liu, X.-H.; Feng, X.-M. Chem.-Eur. J. 2017, 23, 16447.
[17]
(e) Ji, J.; Lin, L.-L.; Tang, Q.; Kang, T.-F.; Liu, X.-H.; Feng, X.-M. ACS Catal. 2017, 7, 3763.
[17]
(f) Trost, B. M.; Gnanamani, E.; Tracy, J. S.; Kalnmals, C. J. Am. Chem. Soc. 2017, 139, 18198.
[17]
(g) Rout, S.; Joshi, H.; Singh, V. K. Org. Lett. 2018, 20, 2199.
[18]
For selected reports on the γ-addition of deconjugated butenolides, see: (a) Sakai, T.; Hirashima, S.; Matsushima, Y.; Nakano, T.; Ishii, D.; Yamashita, Y.; Nakashima, K.; Koseki, Y.; Miura, T. Org. Lett. 2019, 21, 2606.
[19]
Jefford, C. W.; Jaggi, D.; Boukouvalas, J. J. Chem. Soc., Chem. Commun. 1988, 1595.
[20]
Egorova, A. Y.; Timofeeva, Z. Y. Russ. J. Gen. Chem. 2003, 73, 655.
[21]
Griswold, J. A.; Horwitz, M. A.; Leiva, L. V.; Johnson, J. S. J. Org. Chem. 2017, 82, 2276.
[22]
(a) Mengel, A.; Reiser, O. Chem. Rev. 1999, 99, 1191.
[22]
(b) Evans, D. A.; Siska, S. J.; Cee, V. J. Angew. Chem., Int. Ed. 2003, 42, 1761.
[22]
(c) Cee, V. J.; Cramer, C. J.; Evans, D. A. J. Am. Chem. Soc. 2006, 128, 2920.
[23]
Yang, M.; Chen, C.; Yi, X.; Li, Y.; Wu, X.; Li, Q.; Ban, S. Org. Biomol. Chem. 2019, 17, 2883.
[24]
Li, Feng.; Wang, J.; Pei, W.; Ma, H.; Li, H.; Cui, M.; Peng, S.; Wang, S.; Liu, L. Tetrahedron Lett. 2018, 59, 3010.
[25]
Trost, B. M.; Joey Hung, C.-I.; Scharf, M. J. Angew. Chem., Int. Ed. 2018, 57, 11408.
[26]
Huang, Z-Y.; Yang, H.; Zhou, L.; Li, Q.-H.; Zhao, Z.-G. Tetrahedron. 2022, 112, 132740.
[27]
Wu, Bo.; Yu, Z.; Gao, X.; Lan, Y.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2017, 56, 4006.
[28]
(a) Green, A. G.; Liu, P.; Merlic, C. A.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 4575.
[28]
(b) Wang, T.; Yu, Z.; Hoon, D. L.; Phee, C. Y.; Lan, Y.; Lu, Y. J. Am. Chem. Soc. 2016, 138, 265.
[29]
Wang, Y.-N.; Xiong, Q.; Lu, L.-Q.; Zhang, Q.-L.; Wang, Y.; Lan, Y.; Xiao, W.-J. Angew. Chem., Int. Ed. 2019, 58, 11013.
[30]
Xu, Y.-W.; Hu, X.-P. Org. Lett. 2019, 21, 8091.
[31]
Hattori, G.; Sakata, K.; Matsuzawa, H.; Tanabe, Y.; Miyake, Y.; Nishibayashi, Y. J. Am. Chem. Soc. 2010, 132, 10592.
[32]
Zhao, J.-Q.; Luo, S.-W.; Zhang, X.-M.; Xu, X.-Y.; Zhou, M.-Q.; Yuan, W.-C. Tetrahedron 2017, 73, 5444.
[33]
Sharma, B. M.; Shinde, D. R.; Jain, R.; Begari, E.; Satbhaiya, S.; Gonnade, R. G.; Kumar, P. Org. Lett. 2018, 20, 2787.
[34]
Masuyama, Y.; Kobayashi, Y.; Yanagi, R.; Kurusu, Y. Chem. Lett. 1992, 2039.
[35]
Isambert, N.; Cruz, M.; Arévalo, M. J.; Gómez, E.; Lavilla, R. Org. Lett. 2007, 9, 4199.
[36]
Huo, C.; Yuan, Yong. J. Org. Chem. 2015, 80, 12704.
[37]
Huo, C.; Yuan, Y.; Chen, F.; Tang, J.; Wang, Y. Org. Lett. 2015, 17, 4208.
[38]
Zhou, H.; Yang, X.; Li, S.; Zhu, Y.; Li, Y.; Zhang, Y. Org. Biomol. Chem. 2018, 16, 6728.
[39]
(a) For reviews on nitrosocarbonyl chemistry, see: Palmer, L. I.; Frazier, C. P.; Read De Alaniz, J. Synthesis 2014, 46, 269.
[39]
(b) Maji, B.; Yamamoto, H. Bull. Chem. Soc. Jpn. 2015, 88, 753.
[39]
(c) Memeo, M. G.; Quadrelli, P. Chem. Rev. 2017, 117, 2108.
[39]
(d) Dana, S.; Ramakrishna, I.; Baidya, M. Synthesis 2017, 49, 3281.
[40]
Mallik, S.; Bhajammanavar, V.; Baidya, M. Org. Lett. 2020, 22, 1437.
[41]
(a) Payette, J. N.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 12276.
[41]
(b) Maji, B.; Yamamoto, H. Angew. Chem., Int. Ed. 2014, 53, 14472.
文章导航

/