水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究
收稿日期: 2023-02-28
修回日期: 2023-05-08
网络出版日期: 2023-05-30
基金资助
湖南省自然科学基金(2021JJ30537); 湖南省大学生创新训练基金(S202110548054); 国家自然科学基金(21563015)
A Green, Recyclable and Carrier-Free Study for the Coupling Reaction of Alkenes with Aryl Iodides in H2O-Polyethylene Glycol (PEG-200)
Received date: 2023-02-28
Revised date: 2023-05-08
Online published: 2023-05-30
Supported by
Natural Science Foundation of Hunan Province(2021JJ30537); University Students Innovation Training Foundation of Hunan Province(S202110548054); National Natural Science Foundation of China(21563015)
以环境友好的水-聚乙二醇(PEG-200)为反应介质, 发展了一种绿色、可循环Pd(OAc)2催化烯烃与碘代芳烃交叉偶联反应的新方法. 通过该方法可以获得一系列具有良好选择性和高收率的偶联产物. Pd(OAc)2-H2O-PEG-200体系可以直接回收并用于3次以上的循环而不失去反应活性, 证明整个无负载钯催化体系的稳定性. 该方法降低了反应成本, 操作简单, 有利于工业化生产.
关键词: 无负载; 可循环; 水-聚乙二醇(PEG-200); 交叉偶联; 绿色化学
蒋宜欣 , 唐伯孝 , 毛海波 , 陈雪霞 , 俞洋杰 , 全翠英 , 徐昭阳 , 石金慧 , 刘益林 . 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023 , 43(9) : 3210 -3215 . DOI: 10.6023/cjoc202302030
By using an environmentally friendly H2O-polyethylene glycol (PEG-200) system as the reaction medium, a new, green and recyclable protocol was developed for Pd(OAc)2-catalyzed the cross-coupling reaction of alkenes with aryl iodides. A series of coupling products can be obtained with good selectivity and yield. The Pd(OAc)2-H2O-PEG-200 system can be directly recovered and used for more than three cycles without any loss of activity, demonstrating the robustness of the carrier-free palladium catalyst system. As the reaction cost is reduced and the operation is simple, the approach is beneficial to industrial production.
| [1] | Biffis A.; Centomo P.; Zotto A. D.; Zecca M. Chem. Rev. 2018, 118, 2249. |
| [2] | Zhou T.; Szostak M. Catal. Sci. Technol. 2020, 10, 5702. |
| [3] | Rayadurgam J.; Sana S.; Sasikumar M.; Gu Q. Org. Chem. Front. 2021, 8, 384. |
| [4] | Devendar P.; Qu R.-Y.; Kang W.-M.; He B.; Yang G.-F. J. Agric. Food Chem. 2018, 66, 8914. |
| [5] | Dhakshinamoorthy A.; Asiric A. M.; Garcia H. Chem. Soc. Rev. 2015, 44, 1922. |
| [6] | Firsan S. J.; Sivakumar V.; Colacot T. J. Chem. Rev. 2022, 122, 16983. |
| [7] | Zhou B.; Liang R.; Cao Z.; Zhou P.; Jia Y. Acta Chim. Sinica 2021, 79, 176. (in Chinese) |
| [7] | (周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176.) |
| [8] | Ge Y.; Qiu Z.; Xie Z. Acta Chim. Sinica 2022, 80, 432. (in Chinese) |
| [8] | (葛懿修, 邱早早, 谢作伟, 化学学报, 2022, 80, 432.) |
| [9] | Fareghi-Alamdari R.; Haqiqib M. G.; Zek N. New J. Chem. 2016, 40, 1287. |
| [10] | Das M. K.; Bobb J. A.; Ibrahim A. A.; Lin A.; AbouZeid K. M.; El-Shal M. S. ACS Appl. Mater. Interfaces 2020, 12, 23844. |
| [11] | Le X.; Dong Z.; Liu Y.; Jin Z.; Huy T.-D.; Le M.; Ma J. J. Mater. Chem. A 2014, 2, 19696. |
| [12] | Ziarani G. M.; Rohani S.; Ziarati A.; Badiei A. RSC Adv. 2018, 8, 41048. |
| [13] | Fan M.; Wang W. D.; Wang X.; Zhu Y.; Dong Z. Ind. Eng. Chem. Res. 2020, 59, 12677. |
| [14] | Hong K.; Sajjadi M.; Suh J. M.; Zhang Z.; Nasrollahzadeh M.; Jang H. W.; Varma R. S.; Shokouhimehr M. ACS Appl. Nano Mater. 2020, 3, 2070. |
| [15] | Molnár á. Chem. Rev. 2011, 111, 2251. |
| [16] | Zhao Z.; Wang J.; Zhang X.; Lin T.; Ren J.; Wan P. Tetrahedron Lett. 2022, 100, 153849. |
| [17] | Zhan K.; Lu P.; Dong J.; Hou X. Chin. Chem. Lett. 2020, 31, 1630. |
| [18] | Fei X.; Kong W.; Chen X.; Jiang X.; Shao Z.; Lee J. Y. ACS Catal. 2017, 7, 2412. |
| [19] | Asiabi H.; Yamini Y.; Shamsayei M.; Miraki M. K.; Heydari A. ACS Sustainable Chem. Eng. 2018, 6, 12613. |
| [20] | Galaverna R. S.; Fernandes L. P.; Silva V. H. M.; Siervo A.; Pastre J. C. Eur. J. Org. Chem. 2022, 2022, e202200376. |
| [21] | Chopra J.; Dayma V.; Mandal A.; Baroliya P. K.; Maiti D. ChemistrySelect 2022, 7, e202200925. |
| [22] | Tang B.-X.; Zou H.; Xie B.-X.; Zhong H.-Q.; Wang Y.-H.; Chen Y.; Hu M.; Wen Q.-Q.; Yang S.-Y. Synlett 2020, 31, 793. |
| [23] | Tang B.-X.; Kuang R.-Y.; Wen J.-W.; Huang X.; Zhang Z.-X.; Shen Y.-J.; Chen J.-P.; Wu W.-Y. Tetrahedron Lett. 2019, 60, 1975. |
| [24] | Tang B.-X.; Fang X.-N.; Kuang R.-Y.; Cai J.-H.; Wu J.-H. Chin. J. Org. Chem. 2017, 37, 2956. (in Chinese) |
| [24] | (唐伯孝, 方小牛, 匡仁云, 蔡金华, 吴建宏, 有机化学, 2017, 37, 2956.) |
| [25] | Chen J.; Spear S. K.; Huddleston J. G.; Rogers R. D. Green. Chem. 2005, 7, 64. |
| [26] | Peh G.-R.; Kantchev E. A. B.; Zhang C.; Ying J. Y. Org. Biomol. Chem. 2009, 7, 2110. |
| [27] | Muthumari S.; Mohan N.; Ramesh R. Tetrahedron Lett. 2015, 56, 4170. |
| [28] | Li K.; Ran L.; Yu Y.-H.; Tang Y. J. Org. Chem. 2004, 69, 3986. |
| [29] | El-Batta A.; Jiang C.; Zhao W.; Anness R.; Cooksy A. L.; Bergdahl M. J. Org. Chem. 2007, 72, 5244. |
| [30] | Gao L.; Liu T.; Tao X.; Huang Y. Tetrahedron Lett. 2016, 57, 4095. |
| [31] | Wang M.-L.; Xu H.; Li H.-Y.; Ma B.; Wang Z.-Y.; Wang X.; Dai H.-X. Org. Lett. 2021, 23, 2147. |
/
| 〈 |
|
〉 |