研究论文

水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究

  • 蒋宜欣 ,
  • 唐伯孝 ,
  • 毛海波 ,
  • 陈雪霞 ,
  • 俞洋杰 ,
  • 全翠英 ,
  • 徐昭阳 ,
  • 石金慧 ,
  • 刘益林
展开
  • a 怀化学院有机合成研究所 湖南怀化 418000
    b 怀化学院聚乙烯醇纤维材料制备技术湖南省工程实验室 湖南怀化 418000

收稿日期: 2023-02-28

  修回日期: 2023-05-08

  网络出版日期: 2023-05-30

基金资助

湖南省自然科学基金(2021JJ30537); 湖南省大学生创新训练基金(S202110548054); 国家自然科学基金(21563015)

A Green, Recyclable and Carrier-Free Study for the Coupling Reaction of Alkenes with Aryl Iodides in H2O-Polyethylene Glycol (PEG-200)

  • Yixin Jiang ,
  • Boxiao Tang ,
  • Haibo Mao ,
  • Xuexia Chen ,
  • Yangjie Yu ,
  • Cuiying Quan ,
  • Zhaoyang Xu ,
  • Jinhui Shi ,
  • Yilin Liu
Expand
  • a Institute of Organic Synthesis, Huaihua University, Huaihua, Hunan 418000
    b Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, Hunan 418000

Received date: 2023-02-28

  Revised date: 2023-05-08

  Online published: 2023-05-30

Supported by

Natural Science Foundation of Hunan Province(2021JJ30537); University Students Innovation Training Foundation of Hunan Province(S202110548054); National Natural Science Foundation of China(21563015)

摘要

以环境友好的水-聚乙二醇(PEG-200)为反应介质, 发展了一种绿色、可循环Pd(OAc)2催化烯烃与碘代芳烃交叉偶联反应的新方法. 通过该方法可以获得一系列具有良好选择性和高收率的偶联产物. Pd(OAc)2-H2O-PEG-200体系可以直接回收并用于3次以上的循环而不失去反应活性, 证明整个无负载钯催化体系的稳定性. 该方法降低了反应成本, 操作简单, 有利于工业化生产.

本文引用格式

蒋宜欣 , 唐伯孝 , 毛海波 , 陈雪霞 , 俞洋杰 , 全翠英 , 徐昭阳 , 石金慧 , 刘益林 . 水-聚乙二醇(PEG-200)中烯烃与碘代芳烃绿色可循环无负载偶联反应的研究[J]. 有机化学, 2023 , 43(9) : 3210 -3215 . DOI: 10.6023/cjoc202302030

Abstract

By using an environmentally friendly H2O-polyethylene glycol (PEG-200) system as the reaction medium, a new, green and recyclable protocol was developed for Pd(OAc)2-catalyzed the cross-coupling reaction of alkenes with aryl iodides. A series of coupling products can be obtained with good selectivity and yield. The Pd(OAc)2-H2O-PEG-200 system can be directly recovered and used for more than three cycles without any loss of activity, demonstrating the robustness of the carrier-free palladium catalyst system. As the reaction cost is reduced and the operation is simple, the approach is beneficial to industrial production.

参考文献

[1]
Biffis A.; Centomo P.; Zotto A. D.; Zecca M. Chem. Rev. 2018, 118, 2249.
[2]
Zhou T.; Szostak M. Catal. Sci. Technol. 2020, 10, 5702.
[3]
Rayadurgam J.; Sana S.; Sasikumar M.; Gu Q. Org. Chem. Front. 2021, 8, 384.
[4]
Devendar P.; Qu R.-Y.; Kang W.-M.; He B.; Yang G.-F. J. Agric. Food Chem. 2018, 66, 8914.
[5]
Dhakshinamoorthy A.; Asiric A. M.; Garcia H. Chem. Soc. Rev. 2015, 44, 1922.
[6]
Firsan S. J.; Sivakumar V.; Colacot T. J. Chem. Rev. 2022, 122, 16983.
[7]
Zhou B.; Liang R.; Cao Z.; Zhou P.; Jia Y. Acta Chim. Sinica 2021, 79, 176. (in Chinese)
[7]
(周波, 梁仁校, 曹中艳, 周平海, 贾义霞, 化学学报, 2021, 79, 176.)
[8]
Ge Y.; Qiu Z.; Xie Z. Acta Chim. Sinica 2022, 80, 432. (in Chinese)
[8]
(葛懿修, 邱早早, 谢作伟, 化学学报, 2022, 80, 432.)
[9]
Fareghi-Alamdari R.; Haqiqib M. G.; Zek N. New J. Chem. 2016, 40, 1287.
[10]
Das M. K.; Bobb J. A.; Ibrahim A. A.; Lin A.; AbouZeid K. M.; El-Shal M. S. ACS Appl. Mater. Interfaces 2020, 12, 23844.
[11]
Le X.; Dong Z.; Liu Y.; Jin Z.; Huy T.-D.; Le M.; Ma J. J. Mater. Chem. A 2014, 2, 19696.
[12]
Ziarani G. M.; Rohani S.; Ziarati A.; Badiei A. RSC Adv. 2018, 8, 41048.
[13]
Fan M.; Wang W. D.; Wang X.; Zhu Y.; Dong Z. Ind. Eng. Chem. Res. 2020, 59, 12677.
[14]
Hong K.; Sajjadi M.; Suh J. M.; Zhang Z.; Nasrollahzadeh M.; Jang H. W.; Varma R. S.; Shokouhimehr M. ACS Appl. Nano Mater. 2020, 3, 2070.
[15]
Molnár á. Chem. Rev. 2011, 111, 2251.
[16]
Zhao Z.; Wang J.; Zhang X.; Lin T.; Ren J.; Wan P. Tetrahedron Lett. 2022, 100, 153849.
[17]
Zhan K.; Lu P.; Dong J.; Hou X. Chin. Chem. Lett. 2020, 31, 1630.
[18]
Fei X.; Kong W.; Chen X.; Jiang X.; Shao Z.; Lee J. Y. ACS Catal. 2017, 7, 2412.
[19]
Asiabi H.; Yamini Y.; Shamsayei M.; Miraki M. K.; Heydari A. ACS Sustainable Chem. Eng. 2018, 6, 12613.
[20]
Galaverna R. S.; Fernandes L. P.; Silva V. H. M.; Siervo A.; Pastre J. C. Eur. J. Org. Chem. 2022, 2022, e202200376.
[21]
Chopra J.; Dayma V.; Mandal A.; Baroliya P. K.; Maiti D. ChemistrySelect 2022, 7, e202200925.
[22]
Tang B.-X.; Zou H.; Xie B.-X.; Zhong H.-Q.; Wang Y.-H.; Chen Y.; Hu M.; Wen Q.-Q.; Yang S.-Y. Synlett 2020, 31, 793.
[23]
Tang B.-X.; Kuang R.-Y.; Wen J.-W.; Huang X.; Zhang Z.-X.; Shen Y.-J.; Chen J.-P.; Wu W.-Y. Tetrahedron Lett. 2019, 60, 1975.
[24]
Tang B.-X.; Fang X.-N.; Kuang R.-Y.; Cai J.-H.; Wu J.-H. Chin. J. Org. Chem. 2017, 37, 2956. (in Chinese)
[24]
(唐伯孝, 方小牛, 匡仁云, 蔡金华, 吴建宏, 有机化学, 2017, 37, 2956.)
[25]
Chen J.; Spear S. K.; Huddleston J. G.; Rogers R. D. Green. Chem. 2005, 7, 64.
[26]
Peh G.-R.; Kantchev E. A. B.; Zhang C.; Ying J. Y. Org. Biomol. Chem. 2009, 7, 2110.
[27]
Muthumari S.; Mohan N.; Ramesh R. Tetrahedron Lett. 2015, 56, 4170.
[28]
Li K.; Ran L.; Yu Y.-H.; Tang Y. J. Org. Chem. 2004, 69, 3986.
[29]
El-Batta A.; Jiang C.; Zhao W.; Anness R.; Cooksy A. L.; Bergdahl M. J. Org. Chem. 2007, 72, 5244.
[30]
Gao L.; Liu T.; Tao X.; Huang Y. Tetrahedron Lett. 2016, 57, 4095.
[31]
Wang M.-L.; Xu H.; Li H.-Y.; Ma B.; Wang Z.-Y.; Wang X.; Dai H.-X. Org. Lett. 2021, 23, 2147.
文章导航

/