综述与进展

基于分子容器的有机阳离子受体研究进展

  • 朱文杰 ,
  • 徐振创 ,
  • 顾玉诚 ,
  • 赵延川
展开
  • a 中国科学院上海有机化学研究所 中国科学院大学 中国科学院有机氟化学重点实验室 上海 200032
    b 中国科学院上海有机化学研究所 中国科学院能量调控材料重点实验室 上海 200032
    c Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom

收稿日期: 2023-03-20

  修回日期: 2023-04-28

  网络出版日期: 2023-06-07

基金资助

国家自然科学基金(22271305); 先正达博士研究生奖学金资助项目

Research Progress on Organic Cation Receptors Based on Molecular Containers

  • Wenjie Zhu ,
  • Zhenchuang Xu ,
  • Yu-Cheng Gu ,
  • Yanchuan Zhao
Expand
  • a CAS Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032
    b CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom

Received date: 2023-03-20

  Revised date: 2023-04-28

  Online published: 2023-06-07

Supported by

National Natural Science Foundation of China(22271305); Syngenta Postgraduate Fellowship

摘要

分子容器是一种可以模仿酶的受限空间以及活性位点的超分子结构, 自从出现以来引起了超分子科学家的广泛兴趣. 科学家们开发了具有不同大小及电性的分子容器, 以期望其在反应中间体稳定、活性物种捕获以及催化反应等领域具有应用价值. 主要综述了超分子领域广泛关注的几种作为阳离子受体的分子容器, 它们通过对阳离子物种的包裹从而实现稳定活性物种、调节反应活性以及提升底物/反应选择性的目的. 以分子容器的功能分类, 对分子容器的识别行为及其对阳离子物种性质的调控功能进行总结, 阐释其中的原理和规律并对该领域未来的发展进行展望.

本文引用格式

朱文杰 , 徐振创 , 顾玉诚 , 赵延川 . 基于分子容器的有机阳离子受体研究进展[J]. 有机化学, 2023 , 43(9) : 2991 -3005 . DOI: 10.6023/cjoc202303028

Abstract

Molecular containers are supramolecular structures that mimic the confined space and active sites of enzymes, attracting broad interest of supramolecular scientists since their emergence. Scientists have developed molecular containers with different sizes and electronic properties, hoping that they can be applied in stabilizing reaction intermediates, capturing active species and catalyzing reactions. A number of representative molecular containers that are widely studied as cation receptors in the supramolecular field are reviewed. They possess the properties of stabilizing active species, regulating reaction activity and enhancing substrate/reaction selectivity by encapsulating cationic species. The recognition behavior of molecular containers and their function of regulating the properties of cationic species are summarized. The principles and rules involved are explained and an outlook on the future development of this field is provided.

参考文献

[1]
Wilson A. J. Annu. Reports Prog. Chem. Sect. B: Org. Chem. 2007, 103, 174.
[2]
Sherman J. C.; Cram D. J. J. Am. Chem. Soc. 1989, 111, 4527.
[3]
Psilbu S.; Wiberg N.; Schuster H. Angew. Chem., nt. Ed. 1991, 97, 1024.
[4]
Chapman O. L.; Mcintosh C. L.; Pacansky J. J. Am. Chem. Soc. 1973, 95, 614.
[5]
Warmuth R. Angew. Chem., nt. Ed. 1997, 36, 1347.
[6]
Warmuth R. Chem. Commun. 1998, 59.
[7]
Warmuth R.; Marvel M. A. Chem.-Eur. J. 2001, 7, 1209.
[8]
Roach P.; Warmuth R. Angew. Chem., nt. Ed. 2003, 42, 3039.
[9]
Liu X.-J.; Chu G.-S.; Moss R. A., Sauers R. R.; Warmuth R. Angew. Chem., nt. Ed. 2005, 44, 1994.
[10]
Hooley R. J.; Iwasawa T.; Rebek J. J. Am. Chem. Soc. 2007, 129, 15320.
[11]
Butterfield S. M.; Rebek J. Chem. Commun. 2007, 1605.
[12]
Xu L.-N.; Hua S.-G.; Li S.-H. Chem. Commun. 2013, 49, 1542.
[13]
Restorp P.; Rebek J. J. Am. Chem. Soc. 2008, 130, 11850.
[14]
Hou J.-L.; Ajami D.; Rebek J. J. Am. Chem. Soc. 2008, 130, 7810.
[15]
K?rner S. K.; Tucci F. C.; Rudkevich D. M.; Heinz T.; Rebek J. Chem.-Eur. J. 2000, 6, 187.
[16]
Fujita M.; Oguro D.; Miyazawa M.; Oka H.; Yamaguchi K.; Ogura K. Nature 1995, 378, 469.
[17]
Yoshizawa M.; Kusukawa T.; Fujita M.; Yamaguchi K. J. Am. Chem. Soc. 2000, 122, 6311.
[18]
Yoshizawa M.; Kusukawa T.; Fujita M.; Sakamoto S.; Yamaguchi K. J. Am. Chem. Soc. 2001, 123, 10454.
[19]
Horiuchi S.; Murase T.; Fujita M. J. Am. Chem. Soc. 2011, 133, 12445.
[20]
Greenaway R. L.; Holden D.; Eden E. G. B.; Stephenson A.; Yong C. W.; Bennison M. J.; Hasell T.; Briggs M. E.; James S. L.; Cooper A. I. Chem. Sci. 2017, 8, 2640.
[21]
Turega S.; Whitehead M.; Hall B. R.; Haddow M. F.; Hunter C. A.; Ward M. D. Chem. Commun. 2012, 48, 2752.
[22]
Webber M. J.; Langer R. Chem. Soc. Rev. 2017, 46, 6600.
[23]
Brown C. J.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2009, 131, 17530.
[24]
Hart-Cooper W. M.; Zhao C.; Triano R. M.; Yaghoubi P.; Ozores H. L.; Burford K. N.; Toste F. D.; Bergman R. G.; Raymond K. N. Chem. Sci. 2015, 6, 1383.
[25]
Galan A.; Ballester P. Chem. Soc. Rev. 2016, 45, 1720.
[26]
Brown C. J.; Toste F. D.; Bergman R. G.; Raymond K. N. Chem. Rev. 2015, 115, 3012.
[27]
Mouarrawis V.; Plessius R.; van der Vlugt J. I.; Reek J. N. H. Front. Chem. 2018, 6, 623.
[28]
Wu L.; Chen Y.-S.; Pei J.-F.; Tang M.; Wang S.-S.; Liu Z.-C. Chin. J. Chem. 2019, 37, 834.
[29]
Xu Z.-C.; Fang N.; Zhao Y.-C. J. Am. Chem. Soc. 2021, 143, 3162.
[30]
Assaf K. I.; Nau W. M. Chem. Soc. Rev. 2015, 44, 394.
[31]
Mock W. L.; Irra T. A.; Wepsiec J. P.; Manimaran T. L. J. Org. Chem. 1983, 48, 3619.
[32]
Decomposition C.; Takaya H.; Science M.; Hirao K.; Promoted S.; Available S. M.; Mock W. L.; Wepsiec J. P.; Adhya M. J. Org. Chem. 1989, 54, 5302.
[33]
Finbloom J. A.; Han K.; Slack C. C.; Furst A. L.; Francis M. B. J. Am. Chem. Soc. 2017, 139, 9691.
[34]
Brev? T. G.; Filius M.; Araman C.; Van Der Helm M. P.; Hagedoorn P.; Joo C.; Van Kasteren S. I.; Eelkema R. Angew. Chem., nt. Ed. 2020, 59, 9340.
[35]
Jiao Y.; Tang B.-H.; Zhang Y.-C.; Xu J. F.; Wang Z.-Q.; Zhang X. Angew. Chem., nt. Ed. 2018, 57, 6077.
[36]
Cong H.; Yamato T.; Tao Z. J. Mol. Catal. A: Chem. 2013, 379, 287.
[37]
Koner A. L.; Márquez C.; Dickman M. H.; Nau W. M. Angew. Chem., nt. Ed. 2011, 50, 545.
[38]
Zheng L.-F.; Sonzini S.; Ambarwati M.; Rosta E.; Scherman O. A.; Herrmann A. Angew. Chem., nt. Ed. 2015, 54, 13007.
[39]
De Lima S. M.; Gómez J. A.; Barros V. P.; Vertuan G. D. S.; Assis M. D. D.; Graeff C. F. D. O.; Demets G. J. F. Polyhedron 2010, 29, 3008.
[40]
Gong W.-J.; Ma J.; Zhao Z.-Y.; Gao F.; Liang F.; Zhang H.-J.; Liu S.-M. J. Org. Chem. 2017, 82, 3298.
[41]
Eelkema R.; Maeda K.; Odell B.; Anderson H. L. J. Am. Chem. Soc. 2007, 129, 12384.
[42]
Liu Y.; Shi J.; Chen Y.; Ke C.-F. Angew. Chem., nt. Ed. 2008, 47, 7293.
[43]
Zhang G.-W.; Li P.-F.; Meng Z.; Wang H.-X.; Han Y.; Chen C.-F. Angew. Chem.,Int. Ed. 2016, 55, 5304.
[44]
Han X.-N.; Li P.-F.; Han Y.; Chen C.-F. Angew. Chem.,Int. Ed. 2022, 61, e202202527.
[45]
Zhu D.-S.; Sun B.; Tong L.; Wu Y.-T.; Cetin M. M.; Li H. Org. Lett. 2022, 24, 8980.
[46]
Black S. P.; Sanders J. K. M.; Stefankiewicz A. R. Chem. Soc. Rev. 2014, 43, 1861.
[47]
Corbett P. T.; Sanders J. K. M.; Otto S. J. Am. Chem. Soc. 2005, 127, 9390.
[48]
Corbett P. T.; Tong L. H.; Sanders J. K. M.; Otto S. J. Am. Chem. Soc. 2005, 127, 8902.
[49]
Brisig B.; Sanders J. K. M.; Otto S. Angew. Chem.,Int. Ed. 2003, 42, 1270.
[50]
James L. I.; Beaver J. E.; Rice N. W.; Waters M. L. J. Am. Chem. Soc. 2013, 135, 6450.
[51]
Cram D. J.; Karbach S.; Kim Y. H.; Baczynskyj L.; Kalleymeyn G. W. J. Am. Chem. Soc. 1985, 107, 2575.
[52]
MacGillivray L. R.; Atwood J. L. Nature 1997, 389, 469.
[53]
Avram L.; Cohen Y. J. Am. Chem. Soc. 2002, 124, 15148.
[54]
La Manna P.; Talotta C.; Floresta G.; De Rosa M.; Soriente A.; Rescifina A.; Gaeta C.; Neri P. Angew. Chem.,Int. Ed. 2018, 57, 5423.
[55]
Br?uer T. M.; Zhang Q.; Tiefenbacher K. Angew. Chem., nt. Ed. 2016, 55, 7698.
[56]
Br?uer T. M.; Zhang Q.; Tiefenbacher K. J. Am. Chem. Soc. 2017, 139, 17500.
[57]
Jans A. C. H.; Gómez-Suárez A.; Nolan S. P.; Reek J. N. H. Chem.-Eur. J. 2016, 22, 14836.
[58]
Cavarzan A.; Scarso A.; Sgarbossa P.; Strukul G.; Reek J. N. H. J. Am. Chem. Soc. 2011, 133, 2848.
[59]
Caneva T.; Sperni L.; Strukul G.; Scarso A. RSC Adv. 2016, 6, 83505.
[60]
Shivanyuk A.; Friese J. C.; D?ring S.; Rebek J. J. Org. Chem. 2003, 68, 6489.
[61]
Heinz T.; Rudkevich D. M.; Rebek J. Nature 1998, 394, 764.
[62]
Chwastek M.; Cmoch P.; Szumna A. J. Am. Chem. Soc. 2022, 144, 5350.
[63]
Tang M.; Liang Y.-M.; Lu X.-Y.; Miao X.-H.; Jiang L.; Liu J.-L; Bian L.-F.; Wang S.-S.; Wu L.; Liu Z.-C. Chem 2021, 7, 2160.
[64]
Brumaghim J. L.; Michels M.; Raymond K. N. Eur. J. Org. Chem. 2004, 4552.
[65]
Dong V. M.; Fiedler D.; Carl B.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2006, 128, 14464.
[66]
Pluth M. D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2007, 129, 11459.
[67]
Hastings C. J.; Pluth M. D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2010, 132, 6938.
[68]
Hastings C. J.; Fiedler D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2008, 130, 10977.
[69]
Dalton D. M.; Ellis S. R.; Nichols E. M.; Mathies R. A.; Toste F. D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2015, 137, 10128.
[70]
Shivanyuk A.; Paulus E. F.; B?hmer V. Angew. Chem., nt. Ed. 1999, 38, 2906.
[71]
Li Y.; Duan Y.-M.; Chen G.-H.; Hu H.-R.; Han X.-N.; Wang K.-P.; Hu Z.-Q.; Chen C.-F. Org. Lett. 2023, 25, 364.
[72]
Brumaghim J. L.; Michels M.; Pagliero D.; Raymond K. N. Eur. J. Org. Chem. 2004, 2004, 5115.
[73]
Saleh N.; Koner A. L.; Nau W. M. Angew. Chem., nt. Ed. 2008, 47, 5398.
[74]
Shi J.; Chen Y.; Wang Q.; Liu Y. Adv. Mater. 2010, 22, 2575.
[75]
Hart-Cooper W. M.; Clary K. N.; Toste F. D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2012, 134, 17873.
[76]
Kaphan D. M.; Toste F. D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2015, 137, 9202.
[77]
Miyamura H.; Bergman R. G.; Raymond K. N.; Toste F. D. J. Am. Chem. Soc. 2020, 142, 19327.
[78]
Pluth M. D.; Bergman R. G. Science 2007, 316, 85.
[79]
Pluth M. D.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2008, 130, 11423.
[80]
Pluth M. D.; Bergman R. G.; Raymond K. N. Angew. Chem., nt. Ed. 2007, 46, 8587.
[81]
Bierschenk S. M.; Bergman R. G.; Raymond K. N.; Toste F. D. J. Am. Chem. Soc. 2020, 142, 733.
[82]
Zhang Q.; Tiefenbacher K. Nat. Chem. 2015, 7, 197.
[83]
Zhang Q.; Catti L.; Pleiss J.; Tiefenbacher K. J. Am. Chem. Soc. 2017, 139, 11482.
[84]
Sokolova D.; Piccini G.; Tiefenbacher K. Angew. Chem., nt. Ed. 2022, 61, e202203384.
[85]
Zhang Q.; Rinkel J.; Goldfuss B.; Dickschat J. S.; Tiefenbacher K. Nat. Catal. 2018, 1, 609.
[86]
Zhang Q.; Tiefenbacher K. Angew. Chem., nt. Ed. 2019, 58, 12688.
[87]
Zhang Q.; Tiefenbacher K. J. Am. Chem. Soc. 2013, 135, 16213.
[88]
K?ster J. M.; Tiefenbacher K. ChemCatChem 2018, 10, 2941.
[89]
MacMillan D. W. C. Nature 2008, 455, 304.
[90]
Leung D. H.; Fiedler D.; Bergman R. G.; Raymond K. N. Angew. Chem., nt. Ed. 2004, 43, 963.
[91]
Leung D. H.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2006, 128, 9781.
[92]
Leung D. H.; Bergman R. G.; Raymond K. N. J. Am. Chem. Soc. 2007, 129, 2746.
[93]
Bender T. A.; Bergman R. G.; Raymond K. N.; Toste F. D. J. Am. Chem. Soc. 2019, 141, 11806.
[94]
Wang Z. J.; Brown C. J.; Bergman R. G.; Raymond K. N.; Toste F. D. J. Am. Chem. Soc. 2011, 133, 7358.
[95]
Wang Z. J.; Clary K. N.; Bergman R. G.; Raymond K. N.; Toste F. D. Nat. Chem. 2013, 5, 100.
[96]
Levin M. D.; Kaphan D. M.; Hong C. M.; Bergman R. G.; Raymond K. N.; Toste F. D. J. Am. Chem. Soc. 2016, 138, 9682.
[97]
Kaphan D. M.; Levin M. D.; Bergman R. G.; Raymond K. N.; Toste F. D. Science 2015, 350, 1235.
[98]
Bender T. A.; Morimoto M.; Bergman R. G.; Raymond K. N.; Toste F. D. J. Am. Chem. Soc. 2019, 141, 1701.
[99]
Narayanam J. M. R.; Stephenson C. R. J. Chem. Soc. Rev. 2011, 40, 102.
[100]
Bianchini G.; Scarso A.; Sorella G. L.; Strukul G. Chem. Commun. 2012, 48, 12082.
文章导航

/