研究论文

PPh3-促进邻炔基硝基苯合成3-羟基-2-吲哚酮

  • 赵雪纯 ,
  • 樊辉 ,
  • 徐瑶 ,
  • 廖小铭 ,
  • 张小祥
展开
  • 南京林业大学化学工程学院 南京 210037

收稿日期: 2023-04-13

  修回日期: 2023-06-05

  网络出版日期: 2023-06-14

基金资助

江苏省自然科学基金(BK20171449)

PPh3-Mediated Synthesis of 3-Hydroxy-2-oxindoles from o-Alkynylnitrobenzenes

  • Xuechun Zhao ,
  • Hui Fan ,
  • Yao Xu ,
  • Xiaoming Liao ,
  • Xiaoxiang Zhang
Expand
  • College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037

Received date: 2023-04-13

  Revised date: 2023-06-05

  Online published: 2023-06-14

Supported by

Natural Science Foundation of Jiangsu Province-Grants(BK20171449)

摘要

3-羟基-2-吲哚酮核心结构在合成化学和药物化学中都具有重要的意义. 发现了一种新的、有效的由邻炔基硝基芳烃制备3-羟基-2-吲哚酮的碱促进方法, 该反应可在不含过渡金属的条件下进行. 对各种邻炔基硝基芳烃进行测定, 并以中等至良好的产率获得所需的产物. 由三苯基膦引发的Wittig反应和随后的偶姻重排构成了主要的反应过程.

本文引用格式

赵雪纯 , 樊辉 , 徐瑶 , 廖小铭 , 张小祥 . PPh3-促进邻炔基硝基苯合成3-羟基-2-吲哚酮[J]. 有机化学, 2023 , 43(11) : 3997 -4002 . DOI: 10.6023/cjoc202304017

Abstract

The 3-hydroxy-2-oxindole core structure is of considerable significance in both synthetic and medicinal chemistry. A novel and efficient base-promoted method for the preparation of 3-hydroxy-2-oxindoles from o-alkynylnitroarenes has been discovered. The reaction could be conducted under transition metal free conditions. Various o-alkynylnitroarenes were checked and the desired products were obtained in moderate to good yields. The Wittig-like reaction triggered by the PPh3 and the subsequent acyloin rearrangement constituted the main reaction process.

参考文献

[1]
(a) Lin, M. J.; Zhu, L.; Xia, J. J.; Yu, Y. H.; Chen, J. X.; Mao, Z. F.; Huang, X. L. Adv. Synth. Catal. 2018, 360, 2280.
[1]
(b) Yu, Y. H.; Zhu, L.; Liao, Y.; Mao, Z. F.; Huang, X. L. Adv. Synth. Catal. 2016, 358, 1059.
[1]
(c) Kenny, R. T.; Liu, F. Asian J. Org. Chem. 2022, 11.
[1]
(d) Ma, L. Y.; Yu, Y. H.; Xin, L. T.; Zhu, L.; Xia, J. J.; Ou, P. C.; Huang, X. L. Adv. Synth. Catal. 2021, 363, 2573.
[1]
(e) Day, D. P.; Chan, P. W. H. Adv. Synth. Catal. 2016, 358, 1368.
[1]
(f) Jin, J. W.; Zhao, Y. C.; Sze, E. M. L.; Kothandaraman, P.; Chan, P. W. H. Adv. Synth. Catal. 2018, 360, 4744.
[1]
(g) Zhao, Y. C.; Henry, S. A.; Jin, J. W.; Clarkson, G. J.; Chan, P. W. H. Asian J. Org. Chem. 2019, 8, 1029.
[1]
(h) Zheng, Y.; Qian, S. C.; Xu, P. C.; Ma, T. T.; Huang, S. L. Adv. Synth. Catal. 2022, 364, 3800.
[1]
(i) Meng, X. T.; Xu, H. H.; Liu, R.; Zheng, Y.; Huang, S. L. Green Chem. 2022, 24, 4754.
[1]
(j) Huang, Y.; Chen, D. F.; Zheng, Y.; Huang, S. L. Chemistryselect, 2022, 7.
[1]
(k) Song, L. N.; Tian, X. H.; Han, C. Y.; Amanpur, M.; Rominger, F.; Hashmi, A. S. K. Org. Chem. Front. 2021, 8, 3314.
[1]
(l) Greiner, L. C.; Inuki, S.; Arichi, N.; Oishi, S.; Suzuki, R.; Iwai, T.; Sawamura, M.; Hashmi, A. S. K.; Ohno, H. Chem.-Eur. J. 2021, 27, 12992.
[1]
(m) Lustosa, D. M.; Hartmann, D.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Eur. J. Org. Chem. 2020, 2020, 1160.
[1]
(n) Li, Z. Y.; Wang, N. N.; Liu, J.; Mei, H. B.; Soloshonok, V. A.; Han, J. L. Org. Lett. 2021, 23, 6941.
[1]
(o) Xie, L. G.; Shaaban, S.; Chen, X. Y.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55, 12864.
[1]
(p) Liu, Q. S.; Wang, L. L.; Yue, H. L.; Li, J. S.; Luo, Z. D.; Wei, W. Green Chem. 2019, 21, 1609.
[1]
(q) Sun, J. B.; Miao, T.; Li, P. H.; Wang, L. Chin. J. Org. Chem. 2021, 41, 3144. (in Chinese)
[1]
(孙佳兵, 苗涛, 李品华, 王磊, 有机化学, 2021, 41, 3144.)
[2]
(a) Zheng, K.; Yin, C. K.; Liu, X. H.; Lin, L. L.; Feng, X. M. Angew. Chem. Int. Ed. 2011, 50, 2573.
[2]
(b) Pastor, M.; Vayer, M.; Weinstabl, H.; Maulide, N. J. Org. Chem. 2022, 87, 606.
[2]
(c) Gambacorta, G.; Apperley, D. C.; Baxendale, I. R. Molecules 2020, 25, 2160.
[2]
(d) El-Hussieny, M.; El-Sayed, N. F.; Fouad, M. A.; Ewies, E. F. Bioorg. Chem. 2021, 117, 105421.
[2]
(e) Han, J. S.; Zhang, J. L.; Zhang, W. Q.; Gao, Z. W.; Xu, L. W.; Jian, Y. J. J. Org. Chem. 2019, 84, 7642.
[3]
(a) Mo, Y. Z.; Zhao, J. P.; Chen, W. P.; Wang, Q. F. Res. Chem. Intermediat. 2015, 41, 5869.
[3]
(b) Griffiths, B. M.; Burl, J. D.; Wang, X. Synlett 2016, 27, 2039.
[3]
(c) Ori, M.; Toda, N.; Takami, K.; Tago, K.; Kogen, H. Tetrahedron 2005, 61, 2075.
[3]
(d) Boominathan, S. S. K.; Wang, J. J. Chem.-Eur. J. 2015, 21, 17044.
[3]
(e) Singh, S.; Gajulapati, V.; Gajulapati, K.; Goo, J. I.; Park, Y. H.; Jung, H. Y.; Lee, S. Y.; Choi, J. H.; Kim, Y. K.; Lee, K.; Heo, T. H.; Choi, Y. Bioorg. Med. Chem. Lett. 2016, 26, 1282.
[3]
(f)Wang, W.; Cencic,R.; L. Whitesell, J. Pelletier, J.; Porco, J. A. Wang, W.; Cencic, R.; L. Whitesell, J. Pelletier, J.; Porco, J. A. Chem.-Eur. J. 2016, 22, 12006
[3]
(h) Franke, J.; Kim, J.; Hamilton, J. P.; Zhao, D. Y.; Pham, G. M., Wiegert-Rininger, K.; Crisovan, E.; Newton, L.; Vaillancourt, B.; Tatsis, E.; Buell, C. R.; O'Connor, S. E. ChemBioChem 2019, 20, 83.
[3]
(i) Khuzhaev, V. U.; Zhalolov, I.; Turgunov, K. K.; Tashkhodzhaev, B.; Levkovich, M. G.; Aripova, S. F.; Shashkov, A. S. Chem. Nat. Compd. 2004, 40, 269.
[4]
(a) De Silva, N. H.; Dahdah, A.; Blanch, E. W.; Huegel, H. M.; Maniam, S. Eur. J. Med. Chem. 2022, 240.
[4]
(b) Kinthada, L. K.; Ghosh, S.; Babu, K. N.; Sharique, M.; Biswas, S.; Bisai, A. Org. Biomol. Chem. 2014, 12, 8152.
[4]
(c) Seo, D. Y.; Min, B. K.; Roh, H. J.; Kim, J. N. B. Korean Chem. Soc. 2017, 38, 1231.
[4]
(d) Chandran, R.; Pise, A.; Shah, S. K.; Rahul, D.; Baluni, A.; Tiwari, K. N. Synth. Commun. 2021, 51, 245.
[4]
(e) Sohail, M.; Tanaka, F. Chem.-Eur. J. 2020, 26, 222.
[5]
(a) Kamano, Y.; Zhang, H. P.; Ichihara, Y.; Kizu, H.; Komiyama, K.; Pettit, G. R. Tetrahedron Lett. 1995, 36, 2783.
[5]
(b) Rasmussen, H. B.; MacLeod, J. K. J. Nat. Prod. 1997, 60, 1152.
[5]
(c) Suchy, M.; Kutschy, P.; Monde, K.; Goto, H.; Harada, N.; Takasugi, M.; Dzurilla, M.; Balentova, E. J. Org. Chem. 2001, 66, 3940.
[5]
(d) Tang, Y. Q.; Sattler, I.; Thiericke, R.; Grabley, S.; Feng, X. Z. Eur. J. Org. Chem. 2001, 2001, 261.
[6]
(a) Kumar, G. S.; Ramesh, P.; Kumar, A. S.; Swetha, A.; Meshram, H. M. Tetrahedron Lett. 2013, 54, 5048.
[6]
(b) Zhou, Z. Q.; Xu, Y.; Zhu, B. Y.; Li, P.; Hu, G. W.; Yang, F.; Xu, S. J.; Zhang, X. X. New J. Chem. 2020, 44, 20303.
[6]
(c) Liu, D. Y.; Zhao, G. W.; Xiang, L. Eur. J. Org. Chem. 2010, 2010, 3975.
[6]
(d) Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Chem. Rev. 2012, 112, 2557.
[6]
(e) Repka, L. M.; Reisman, S. E. J. Org. Chem. 2013, 78, 12314.
[6]
(f) Zhuo, C. X.; Zheng, C.; You, S. L. Acc. Chem. Res. 2014, 47, 2558.
[6]
(g) Zi, W. W.; Zuo, Z. W.; Ma, D. W. Acc. Chem. Res. 2015, 48, 702.
[6]
(h) Roche, S. P.; Tendoung, J. J. Y.; Treguier, B. Tetrahedron 2015, 71, 3549.
[6]
(i) Wang, Y. S.; Xie, F. K.; Lin, B.; Cheng, M. S.; Liu, Y. X. Chem.- Eur. J. 2018, 24, 14302.
[6]
(j) Huang, G. H.; Yin, B. L. Adv. Synth. Catal. 2019, 361, 405.
[6]
(k) Silva, T. S.; Rodrigues, M. T.; Santos, H.; Zeoly, L. A.; Almeida, W. P.; Barcelos, R. C.; Gomes, R. C.; Fernandes, F. S.; Coelho, F. Tetrahedron 2019, 75, 2063.
[7]
(a) Peris, G.; Vedejs, E. J. Org. Chem. 2015, 80, 3050.
[7]
(b) Nakazaki, A.; Mori, A.; Kobayashi, S.; Nishikawa, T. Tetrahedron Lett. 2012, 53, 7131.
[7]
(c) Ulikowski, A.; Furman, B. Org. Lett. 2016, 18, 149.
[7]
(d) Tokunaga, T.; Hume, W. E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R. Bioorg. Med. Chem. Lett. 2005, 15, 1789.
[8]
(a) Nasim, A.; Thomas, G. T.; Ovens, J. S.; Newman, S. G. Org. Lett. 2022, 24, 7232.
[8]
(b) Kise, N.; Sasaki, K.; Sakurai, T. Tetrahedron, 2014, 70, 9668.
[8]
(c) Mandal, T.; Jana, S.; Dash, J. Eur. J. Org. Chem. 2017, 2017, 4972.
[8]
(d) Reddy, G. S.; Hossain, K. A.; Kumar, J. S.; Thirupataiah, B.; Edwin, R. K.; Giliyaru, V. B.; Hariharapura, R. C.; Shenoy, G. G.; Misra, P.; Pal, M. RSC Adv. 2020, 10, 289.
[9]
(a) Kaur, J.; Kumar, A.; Chimni, S. S., Tetrahedron Lett. 2014, 55, 2138.
[9]
(b) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.; Franz, A. K. Angew. Chem. Int. Ed. 2010, 49, 744.
[9]
(c) Ramachary, D. B.; Reddy, G. B.; Mondal, R. Tetrahedron Lett. 2007, 48, 7618.
[9]
(d) Nicolaou, K. C.; Rao, P. B.; Hao, J. L.; Reddy, M. V.; Rassias, G.; Huang, X. H.; Chen, D. Y. K.; Snyder, S. A. Angew. Chem., Int. Ed. 2003, 42, 1753.
[9]
(e) Zhang, J. W.; Wu, H.; Zhang, W. X.; Wang, L. M.; Jin, Y. Chin. J. Org. Chem. 2021, 41, 1187. (in Chinese)
[9]
(张俊伟, 吴昊, 张伟鑫, 王黎明, 金瑛, 有机化学, 2021, 41, 1187.)
[10]
(a) Wei, W. T.; Zhu, W. M.; Shao, Q. J.; Bao, W. H.; Chen, W. T.; Chen, G. P.; Luo, Y. J.; Liang, H. Z. ACS Sustainable Chem. Eng. 2018, 6, 8029.
[10]
(b) Ohmatsu, K.; Ando, Y.; Ooi, T. Synlett 2017, 28, 1291.
[10]
(c) Ying, W. W.; Zhu, W. M.; Gao, Z. H.; Liang, H. Z.; Wei, W. T. Synlett 2018, 29, 663.
[11]
(a) Shin, I.; Ramgren, S. D.; Krische, M. J. Tetrahedron 2015, 71, 5776.
[11]
(b) Shirai, T.; Yamamoto, Y. Organometallics 2015, 34, 3459.
[11]
(c) Shirai, T.; Ito, H.; Yamamoto, Y. Angew. Chem., Int. Ed. 2014, 53, 2658.
[11]
(d) He, J. Q.; Chen, C.; Yu, W. B.; Liu, R. R.; Xu, M.; Li, Y. J.; Gao, J. R.; Jia, Y. X. Tetrahedron Lett. 2014, 55, 2805.
[11]
(e) Li, Y.; Zhu, D. X.; Xu, M. H. Chem. Commun. 2013, 49, 11659.
[11]
(f) Hu, J. X.; Wu, H.; Li, C. Y.; Sheng, W. J.; Jia, Y. X.; Gao, J. R. Chem.-Eur. J. 2011, 17, 5234.
[11]
(g) Gorokhovik, I.; Neuville, L.; Zhu, J. P. Org. Lett. 2011, 13, 5536.
[11]
(h) Jia, Y. X.; Katayev, D.; Kundig, E. P. Chem. Commun. 2010, 46, 130.
[12]
Zhao, Y. W.; Zhu, H. R.; Sung, S. Y.; Wink, D. J.; Zadrozny, J. M.; Driver, T. G. Angew. Chem., Int. Ed. 2021, 60, 19207.
[13]
Aksenov, A. V.; Aleksandrova, E. V.; Aksenov, D. A.; Aksenova, A. A.; Aksenov, N. A.; Nobi, M. A.; Rubin, M. J. Org. Chem. 2022, 87, 1434.
[14]
(a) Fan, H.; Xu, Y.; Yang, F.; Xu, S. J.; Zhao, X. C.; Zhang, X. X. Adv. Synth. Catal. 2022, 364, 2358.
[14]
(b) Xu, Y.; Fan, H.; Yang, F.; Xu, S. J.; Zhao, X. C.; Liao, X. M.; Zhang, X. X. J. Org. Chem. 2023, 88, 2801.
[15]
Mei, H.; Wang, N.; Li, Z.; Han, J. Org. Lett. 2022, 24, 2258.
[16]
Wetzel, A.; Gagosz, F. Angew. Chem., Int. Ed. 2011, 50, 7354.
[17]
Bumagin, N. A.; Sukhomlinova, L. I.; Luzikova, E. V.; Tolstaya, T. P.; Beletskaya, I. P. Tetrahedron Lett. 1996, 37, 897.
[18]
Xiao, Z. K.; Yin, H. Y.; Shao, L. X. Org. Lett. 2013, 15, 1254.
[19]
Chaudhari, M. B.; Sutar, Y.; Malpathak, S.; Hazra, A.; Gnana- prakasam, B. Org. Lett. 2017, 19, 3628.
文章导航

/